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RESUMO 

 

 

 O presente trabalho tem como escopo fornecer um método para o projeto do 

sistema de propulsão e de controle de mísseis balísticos. Para tanto, incialmente 

desenvolve-se toda a teoria necessária para o projeto do bocal, no caso 

bidimensional, baseando-se nos métodos das características para determinação do 

perfil para o comprimento mínimo, bem como na solução das equações diferenciais 

que regem o fenômeno bidimensionalmente e quasi-unidimensionalmente. O 

primeiro tem o fim de avaliar o efeito da camada limite na geometria e determinação 

de materiais no bocal, o segundo representar a dinâmica de escape dos gases de 

maneira adequada e simplificada. Também é feita alusão ao processo de combustão 

de combustíveis sólidos a fim de se determinar a temperatura na câmara de 

combustão bem como a sua dinâmica de queima, necessária para estimar o empuxo 

fornecido. Por fim, no que se refere ao sistema de propulsão, simulações 

bidimensionais considerando escoamento turbulento também foram feitas. A 

aplicação dos métodos por meios computacionais é feita e seus resultados validados 

em comparação com outros apresentados na bibliografia. Quanto ao controle, 

incialmente é feito um modelo dinâmico do míssil e em seguida todo o 

desenvolvimento da síntese do controlador de tal forma que o artefato mantenha-se 

na trajetória pré-determinada, rejeitando distúrbios ao longo do caminho. 

 

Palavras-chave: Fluidos compressíveis. Bocal bidimensional.. Método das 

características. Combustão. Mísseis. Dinâmica dos Fluídos Computacional. 

  



ABSTRACT 

 

 

 This report aims to provide a method to design the propulsion and control 

systems for a ballistic missile. For this purpose, initially the whole theory which 

serves as background for the nozzle design is reviewed based on the characteristics 

and hodograph methods. Allusion to combustion is also provided since it is of the 

utmost importance to determine the temperature inside the combustion chamber as 

well as its burn dynamics provides means to evaluate the maximum thrust to be 

provided. The computational simulations of the methods for the nozzle design are 

made and its results are compared to the ones found on the bibliography in order to 

validate the models. Still considering the propulsion system, turbulent bidimensional 

flow through the nozzle were also simulated for the sake of studying differences 

among different geometries. Concerning the control, what is sought is the 

maintenance of a pre-described trajectory, rejecting all the disturbances during the 

movement, hence a dynamic model is presented and based on it all the control 

synthesis is made. 

 

Keywords: Compressible fluids. Bidimensional nozzle. Characteristics method. 

Combustion. Missiles. Computational Fluid Dynamics. 
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1. INTRODUÇÃO 

 

 

 Mísseis são importantes e estratégicos dispositiovos de defesa amplamente 

difundidos no globo, utilizados por órgão de defesa de todos as nações do mundo. 

Algumas são suas configurações e tipos podendo-se citar misseis de cruzeiro, que 

dispensam quaisquer esforços de comando, sendo pilotados automaticamente; e 

também mísseis estratégicos que podem ser despejados de aeronaves atingindo o 

solo ou mesmo lançados a partir do silos, tal como os mísseis balísticos, objeto de 

estudo do presente trabalho. 

 Em geral tais artefatos possuem um sistema de propulsão tal qual o de 

foguetes, isto é, simplificadamente uma câmara de combustão e um bocal, por onde 

os gases oriundos do processo de combustão são acelerados, fornecendo o empuxo 

necessário para decolagem e possibilidade de atingir o alvo especificado. O 

combustível pode ser líquido ou sólido, sendo o primeiro de projeto bem mais 

complicado dada a necessidade de bombeamento de comburente e combustível de 

maneira dosada de acordo com as necessidades operacionais desejadas. O 

combustível sólido possui características de projeto bastantae simplificadas além de 

possibilidade de controle do processo de combustão dado tanto pela geometria do 

grão-propelente como pelo controle do bocal, possibilitando alguma autonomia no 

que tange o controle da taxa de quiema e de posição. 

 Todos estes mísseis possuem um sistema de controle, seja ele 

completamente embracado, como no caso de um míssil balístico (Siouris, 2004) cujo 

sistema de navegação inercial; ou controlado a distância através de uma central. 

Naturalmente há necessidade de sensores e atuadores para que tal seja possível, 

bem como, no caso de mísseis balísticos, determinação prévia da trajetória a fim de 

fornecer informações relevantes para a determinação do sistema de propulsão, tal 

como empuxo necessário.  

 Para o caso especifico de mísseis balísticos, alguns aspectos devem ser 

levados em consideração tendo em vista seu carárter dificultador no processo de 

síntese ndo controlador, sejam eles a variação de massa no processo de decolagem 



18 

 

e os vários ambientes no qual este dispositivo transita, desde um ambiente 

atmsoférico até fora da atmosfera, sendo necessário considerar estas interfaces e 

seus efeitos quanto aos modelos a serem considerados. 

 O presente trabalho visa modelar um sistema de propulsão para um míssil 

tático, levando em conta a queima de combustível sólido e escoamento 

compressível através de um bocal, sendo este feito de maneira genérica a fim de 

possibilitar o estudo de uma variada gama de configurações que eventualmente 

podem levar a rresultados análogos no que tange o empuxo necessário gerado. 

Também será apresentada a síntese de um regulador para um fim específico, sendo 

necessário o equacionamento de modelos dinâmicos, sensores e atuadores. 
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2. RESUMO E OBJETIVOS DO PROJETO 

 

 

 O presente projeto diz respeito ao projeto de alguns dos subsistemas típicos 

de um míssil. Estes são o sistema de propulsão e o sistema de controle, essenciais 

para o fim de tal dispositivo. 

 Tal tema de trabalho foi escolhido segundo sua abrangência no que diz 

respeito a sua multidisciplinaridade segundo os temas tratados durante a graduação 

em engenharia mecânica. Para a realização de tal é necessário aplicação de 

conhecimentos relacionados a grande área térmica, principalmente àqueles 

relacionados ao escoamento de fluídos compressíveis e processos de combustão. 

Além destes, o modelo matemático da dinâmica envolve algum conhecimento de 

mecânica vetorial ou variacional bem como alguns princípios de escoamento externo 

para a determinação de forças de natureza aerodinâmica. A aplicação da teoria de 

controle também é algo ser observado tendo em vista seu caráter essencial para tais 

dispositivos, sendo esta uma disciplina de importância para a graduação. 

 A adoção deste tema também visa possibilitar a aprendizagem de conceitos e 

teorias de interesse do autor e que não estão inseridas no conteúdo do curso de 

graduação. O aprofundamento em alguns temas de interesse também é um fator 

determinante, sendo em especial a abordagem bidimensional de escoamentos 

compressíveis um interesse particular do autor, tema este não abordado no curso de 

escoamento compressível ministrado em nível de graduação. 

 Quanto ao escopo do trabalho, o que se pretende é fornecer um ferramental 

matemático para a avaliação do sistema de propulsão típico de foguetes, 

possibilitando cálculos de empuxo, taxa de queima de combustível, pressão no 

interior da câmara de combustão, dentre outros parâmetros, para casos genéricos. 

Adicionalmente, deseja-se fornecer meios ou metodologia para a síntese de 

sistemas de controle para mísseis de tal natureza. 
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3. ORGANIZAÇÃO E DESENVOLVIMENTO 

 

 

 O trabalho como um todo pode ser dividido em três grandes partes: sistema 

de propulsão, sistema de controle (ou de ação. Cada um será desenvolvido em 

tempos distintos, mas com intercomunicação, principalmente entre a propulsão e o 

controle, tendo em vista uma dependência clara do segundo em relação ao primeiro 

na etapa de decolagem até o escape da atmosfera. Também o sistema de carga 

explosiva com o sistema de controle, tendo em vista que deve haver um momento 

exato (o de impacto) no qual tal explosivo deve detonar. 

 O primeiro ciclo de trabalho envolverá o equacionamento e simulação de um 

sistema de propulsão típica de foguetes para o artefato em questão. Para tanto 

alguns requisitos básicos devem ser levados em consideração para uma efetiva 

modelagem de tal sistema. Em princípio, uma avaliação acerca do combustível 

sólido é de fundamental importância tendo em vista que este governa a pressão de 

gases de combustão no interior da câmara de combustão, característica que tem 

influência direta no desempenho deste subsistema fundamental. Desta forma, 

incialmente uma revisão bibliográfica acerca do assunto será feita, levantando, a 

princípio, aspectos básicos de um combustível sólido dentre os quais se destacam 

os formatos de grãos e sua influência no processo de combustão; taxa de queima e 

sua relação com a pressão do interior da câmara de combustão; processo de 

combustão de um combustível sólido para variadas composições, avaliando-a 

qualitativamente e quantitativamente, traçando paralelos entre os diferentes 

combustíveis existentes. Também um levantamento acerca das tensões no grão 

bem como processo de transferência de calor para o invólucro também devem ser 

abordados a título de conhecimento. 

Concomitantemente ao levantamento de tais dados, uma avaliação das taxas 

de combustão para algumas geometrias e composições diferentes de combustível 

será feita a partir de simulação numérica, levantando gráficos e comparando-os no 

que diz respeito, principalmente, à pressão no interior da câmara de combustão. 

Inicialmente, levantar-se-á um modelo simples de motor a partir da associação da 
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expressão para determinação da pressão no interior da câmara de combustão dada 

a taxa de queima do combustível e um bocal unidimensional, avaliando 

quantitativamente o empuxo gerado bem como pressões e temperatura no bocal 

segundo a queima do combustível. Pretende-se ter estimativas genéricas com este 

modelo, sofisticando-o numa etapa subsequente do projeto. Por fim, pretende-se 

fazer, ainda nesta primeira etapa do projeto, levantamentos quantitativos da 

combustão destes combustíveis no que diz respeito ao calor envolvido no processo 

de reação. 

Conforme supracitado, o modelo inicial de propulsor deve ser sofisticado a fim 

de se obter melhores estimativas acerca do empuxo a ser fornecido pelo sistema, 

bem como melhor avaliação de suas características como um todo. Para tanto um 

modelo de bocal será avaliado à luz da análise bidimensional de escoamentos de 

fluídos compressíveis, tal como descritos em Shapiro (1953) e Zucrow (1948). Para 

tanto, inicialmente levantar-se-á tal bibliografia, fazendo alguma revisão sobre e em 

seguida os conceitos serão aplicados de forma bastante genérica, fornecendo 

alguma ferramenta computacional que permita a análise de várias condições de 

escoamento a fim de facilitar o processo de definição do sistema propulsor para a 

síntese de um controlador para um caso específico. 

Para o fim desta análise do sistema de propulsão, uma avaliação da 

transferência de calor no bocal e na câmara de combustão será feita a fim de 

possibilitar o fornecimento de estimativas razoáveis para uma eventual seleção de 

material para o conjunto que possa resistir a tais solicitações térmicas, a princípio 

julgadas bastante significativas. Naturalmente não somente este efeito será 

determinante para tal seleção, entretanto no que tange ao estudo termodinâmico de 

um míssil balístico, que é o que se pretende, tais são de fundamental importância. 

Após a conclusão da modelagem de maneira genérica do sistema de 

propulsão, isto é, confecção de rotinas de simulação parametrizadas de forma a 

possibilitar a aplicação aos mais variados conjuntos de dados, passar-se-á a 

determinação do sistema de controle. Neste momento algumas decisões serão de 

fundamental importância, principalmente àquela relacionada ao como se dará a 

atuação do sistema de controle. Algumas possibilidades surgem, conforme já visto 

em Siouris (2004) e Sutton (2001), tais como controle por meio de espécie de flaps 
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nas aletas de estabilização ou ainda, o que possibilita maior flexibilidade de controle, 

segundo Siouris (2004), a atuação se dar no próprio bocal por controle da vazão 

mássica e pelo movimento do bocal segundo direções específicas a fim de controlar 

a direção do escoamento. 

Sabida a atuação e determinados os sensores necessários para o sistema de 

navegação inercial típico de um míssil, proceder-se-á com a determinação de alguns 

requisitos básicos para a caracterização do dispositivo, dentre eles citam-se a 

massa, dimensões, empuxo necessário – o que possibilitará a determinação da 

geometria e do combustível –, avaliação das forças aerodinâmicas atuantes, 

dependentes da geometria do modelo, dentre outros. Com estes dados é possível 

proceder com a modelagem dinâmica do artefato, isto é, com a determinação das 

equações que regem seu movimento. 

 Um cronograma completo e atualizado das atividades é fornecido na figura 

3.1. 
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Figura 3.1 – Cronograma do projeto 
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4. REVISÃO BIBLIOGRÁFICA 

 

 

4.1. COMBUSTÍVEIS SÓLIDOS 

 

4.1.1. Aspectos gerais 

 

 Combustíveis sólidos são alternativa aos combustíveis líquidos para a 

propulsão de foguetes e mísseis, apresentando a vantagem de serem 

construtivamente mais simples tendo em vista o menor número de componentes na 

construção do sistema de propulsão. Este, em geral, é composto por uma câmara de 

combustão na qual o grão-propelente é inserido e um bocal convergente-divergente 

utilizado para acelerar os gases oriundos do processo de combustão, possibilitando, 

por meio do princípio da conservação da quantidade de movimento, gerar uma força 

de empuxo que permite a movimentação do artefato. A figura 4.1 ilustra uma 

configuração usual de um sistema de propulsão por combustível sólido. 

 

 

Figura 4.1 – Configuração usual de um sistema de propulsão por combustível sólido (Aerospace Web, 

2013) 
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 Construtivamente, segundo Sutton (2001), há duas formas possíveis para a 

montagem do grão dentro da câmara de combustão: forma de cartucho carregado 

(cartridge-loaded) ou solidário à câmara de combustão (case-bonded grains). O 

primeiro, de montagem mais simples, permite a colocação do grão propelente dentro 

da carcaça da câmara de combustão, sendo posteriormente fechado com uma 

segunda peça que já possui o bocal, através de um flange. O segundo já é 

caracterizado pela produção do grão concomitante a da carcaça da cãmara de 

combustão, sendo este depositado no interior desta, ou seja, a própria câmara de 

combustão serve de molde para o grão-propelente, sendo este solidário as paredes 

da câmara ou a isolação térmica da mesma. A figura 4.2 ilustra tais configurações. 

 

 

Figura 4.2 – Configurações possíveis da montagem do grão-propelente (Sutton, 2001) 

 

 A câmara de combustão pode assumir formas distintas, bem como o grão 

(conforme será discutido na seção 4.1.2), de acordo com necessidades operacionais 

distintas, obtidas com queima adequada do propelente. A figura 4.3 ilustra três 

configurações distintas para o caso de câmaras com o propelente nelas moldado. 
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Figura 4.3 – Configurações da câmara de combustão para aplicações específicas (Sutton, 2001) 

 

 O grão propelente possui aparência de plástico (Nieble, 1996) e é formado, 

basicamente, por três parcelas: oxidante, combustível e elementos de ligação. 

Segundo Sutton (2001) usualmente se utilizam perclorato de amônia (NH4ClO4) 

dadas suas características de boa compatibilidade com variados combustíveis, 

disponibilidade e bom despenho quanto ao processo de combustão. Também se 

utiliza, em aplicações de menores requisitos de empuxo, alguns tipos de nitratos, tal 

como nitrato de amônia cujo baixo custo e não produção de fumaça pode ser de 

interesse.  

O combustível mais utilizado, ainda segundo Sutton (2001), alumínio em pó 

esferoidizado. Boro e berílio surgem como alternativas, sendo o primeiro de baixa 

eficiência, a não ser quando em grãos bastante diminutos e na presença de ar; o 

segundo já possui queima bastante mais fácil do que o boro, por apresentar ponto 

de fusão mais baixo, produzindo impulso específico maior, entretanto enfrenta 

problemas no que diz respeito sua alta toxidade. 

Aglomerantes são substâncias que visam unir as parcelas sólidas de 

oxidantes e combustíveis num único sólido. Em geral são poliésteres, poliéster e 

poli-butadienos. Implicam em alterações na eficiência de queima dos combustíveis 

dadas reações que se processam nestes polímeros em contato com o oxidante e 
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combustível, bem como em sua degradação, devendo ser bem selecionado para 

comprometer o mínimo possível, o desempenho do sistema de propulsão. 

 Em geral, os grão possuem uma cavidade interna pela qual a combustão é 

deflagrada a partir do uso de algum ignitor. Esta cavidade aumenta numa direção 

radial conforme de processa a combustão, aumentando o volume da câmara de 

combustão ocupado pelos gases, modificando a curva de pressão em função do 

tempo. Há uma quantidade bastante grande de formas desta cavidade interna de 

acordo com o perfil de empuxo desejado a ser fornecido pelo sistema de propulsão, 

entretanto, conforme Sutton (2001), a construção se baseia em algumas poucas 

formas já bastante conhecidas. A seção 4.1.2 o presente texto visa abordar o efeito 

da forma do grão nas características de queima do mesmo. Ainda segundo Sutton 

(2001), há grão propelentes que queimam tal como cigarros, isto é, não possuem 

cavidade interna e são consumidos longitudinalmente, embora o usual não o seja 

utilizar. Também é possível colocar mais de um grão-propelente dentro de uma 

câmara de combustão, sendo esta configuração definida restart grains. 

 Conforme supracitado, o processo de combustão inicia-se pela ação do 

ignitor. Conforme o ar é aquecido e o combustível consumido, o gás no interior da 

câmara a alta pressão e com grande temperatura, passa a promover a continuidade 

da queima do combustível, sendo estas duas propriedades bastante importantes no 

controle deste processo. Para acelerar ou aumentar a eficiência do processo de 

combustão algumas alternativas são utilizadas, tal como a utilização de estereatos 

de chumbo e cobre (Sutton, 2001). 

 Cinzas não são um grande problema no que tange a combustão de 

combustíveis sólidos no atual estado de desenvolvimento dos mesmos. Segundo 

Sutton (2001) apenas 1% dos produtos da combustão são cinzas, contra 7% na 

década de 1970. 
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4.1.2. Formatos de grão 

 

 Conforme será apresentado na seção 4.1.3, a combustão do propelente 

sólido é dependente da área de queima do grão. Desta forma, a forma do grão e de 

fundamental importância para a determinação do projeto do sistema de combustão 

adequado às necessidades.  

Segundo Ordnace Corps (1960), pode-se definir os grãos como de queima 

neutra (quando a geometria é tal que permita queima em taxa constante a cada 

instante de tempo), de queima progressiva (aqueles em que a taxa de combustão 

aumenta de acordo com o tempo) e regressiva (taxa de combustão é reduzida 

conforme o tempo). Tais propriedades de queima são usualmente obtidas com a 

alteração da forma da cavidade interna do grão propelente. 

Há, segundo Sutton (2001) uma grande quantidade de formas de grão 

existente, muito embora o esforço de projeto em geral seja restrito há algumas 

formas bastante estudas e conhecidas. Dentre elas citam-se o grão estrelado e o 

cilíndrico. A figura 4.4 ilustra algumas formas de grão bem como as respectivas 

curvas de empuxo em função do tempo de queima. 

 

 

Figura 4.4 – Variadas geometrias de grão-propelente e respectivas curvas de empuxo em função do 

tempo (Nakka Rocketry, 2013) 
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 Para que haja alteração do perfil de empuxo conforme o tempo, é necessário 

que se altere a taxa de queima do propelente, o que é possível com a alteração da 

área de combustão do propelente. Tal será discutido na seção que se segue. 

 

4.1.3. Taxa de queima 

 

 A taxa de queima de um propelente sólido diz respeito a perda de espessura 

do grão por unidade de tempo durante sua queima. Conforme já exposto, o grão de 

propelente sólido é consumido do centro (onde possui, a priori, uma cavidade) para 

sua porção externa, sendo este consumo dependente, em maior grau, a pressão 

interna da câmara de combustão (Sutton, 2001), e é exatamente esta taxa de 

“degradação” do grão-propelente que esta variável mede. 

 Conforme afirmam Sutton (2001) e Ordnance Corps (1960), o processo de 

combustão de propelente sólido não é completamente explicada a partir de modelos 

algébricos, sendo necessário recorrer a dados experimentais para maior relevância 

no projeto ou seleção do combustível para o sistema de propulsão proposto. Uma 

relação empírica que descreve de maneira adequada a taxa de queima de um 

combustível sólido a uma dada temperatura 𝑇𝑝  do grão imediatamente anterior a 

queima (Ordnance Corps, 1960) é dada pela relação 4.1. 

 

𝑟 = 𝑎𝑝𝑐
𝑛 (4.1) 

 

Com 𝑟 a taxa de queima; 𝑝𝑐 a pressão no interior da cãmara de combustão; 𝑎 

o coeficiente de temperatura, relacionado a temperatura ambiente do grão-

propelente; 𝑛  o índice de combustão que caracteriza a influência da pressão da 

cãmara de combustão na taxa de regressão do combustível sólido. A figura 4.5, 

extraída de Sutton (19xx) ilustra a variação da taxa de combustão em função da 

pressão da câmara de combustão. 

 



29 

 

 

Figura 4.5 – Taxa de queima em função da pressão no interior da câmara de combustão 

(extraído de Sutton, 2001, p. 429) 

 

 O que se nota são maiores taxas de queima do propelente quanto maior sua 

temperatura anterior a queima para cada um daqueles ilustrados no gráfico. Este 

comportamento é explicado pela alteração da cinética química da reação de 

combustão acarretada pelo aumento de temperatura. Há formulação matemática 

que visa quantificar tal efeito na taxa de combustão sendo estas dada pela equação 

4.2, conforme exposto em Sutton (2001). 

 

𝜎𝑝 = (
𝛿 ln 𝑟

𝛿𝑇
)
𝑝
=
1

𝑟
(
𝛿𝑟

𝛿𝑇
)
𝑝
 

(4.2) 

 

 O termo 𝜎𝑃  fornece a sensibilidade da taxa de queima em função da 

temperatura, a uma dada pressão interna da câmara de combustão.  
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 A expressão empírica para taxa de queima permite determinar a taxa de 

geração de gases de combustão, possibilitando deste modo, a partir do 

equacionamento do balanço de massa no sistema de propulsão - composto por 

câmara de combustão e bocal – e assim uma avaliação da pressão da câmara de 

combustão conforme se dá a evolução do processo de combustão com o tempo, 

bem como estipular uma curva de empuxo em função do tempo, dada sua íntima 

relação com a pressão e velocidade dos gases que saem acelerados do bocal, em 

geral, convergente-divergente operando como um bocal de De Laval. Tal será feito 

na seção 5, quando se equacionará tais expressões e, para determinados conjuntos 

de parâmetros, estimar o comportamento do empuxo e pressão na câmara de 

combustão conforme há a evolução da queima do propelente. A vazão mássica 

gerada na queima do grão-propelente é dada pela equação 4.3.  

 

𝑚̇𝑔𝑒𝑟𝑎𝑑𝑜 = 𝑚̇𝑐𝑜𝑚𝑏 = 𝜌𝑔𝑟𝐴𝑞 = 𝜌𝑔(𝑎𝑝𝑐
𝑛)𝐴𝑞 (4.3) 

 

 Da expressão 4.3 tem-se 𝜌𝑔𝑐  a massa específica dos gases oriundos do 

processo de combustão e 𝐴𝑞 a área do propelente sendo queimada. É notório que 

esta varia conforme o tempo dado o consumo de propelente, desta forma a vazão 

mássica também varia com tal. 

 

4.1.4. Combustão de combustíveis sólidos 

 

4.1.4.1. Ignição 

 

 A ignição de combustíveis sólidos, segundo Kuo (1984) possui três 

mecanismos distintos propostos para sua avaliação, sendo eles: 
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 Teoria da ignição térmica: reações químicas exotérmicas que se 

processam na superfície do grão-propelente acarreta em aumento de 

temperatura tal que se atinge a temperatura de ignição; 

 Teoria da fase gasosa: transferência de calor a superfície do grão 

devido a reações exotérmicas da fase gasosa da câmara de combustão 

acarretam em aumento de temperatura da superfície do grão até aquela 

na qual se processa a ignição; 

 Teoria heterogênea: diz respeito, conforme será apresentado na seção 

4.1.4.3, as reações exotérmicas entre os gases oriundos do processo 

de pirólise do aglomerante e decomposição do oxidante. Tais culminam 

em gradiente térmico entre a superfície do grão e estes gases 

acarretando num processo de transferência de calor que tende a 

aquecer o grão até a temperatura de ignição. 

 

 Kuo (1984) ainda destaca que, parte fundamental do processo de combustão 

está na ignição do combustível sólido sendo esta responsável por se obter a pressão 

de trabalho para a queima do combustível. Conforme ilustrado pela figura 4.6, nota-

se três fases bastante distintas: a primeira se estende desde o início da ignição até a 

uma primeira indicação da ignição do grão; a segunda se estende até a ignição 

completa de toda a superfície livre do grão propelente, dando início a terceira fase 

na qual a pressão no interior da câmara de combustão atinge a pressão de projeto. 
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Figura 4.6 – Fases do processo de ignição de combustíveis sólidos (Kuo, 1984) 

 

 Na primeira fase nota-se a existência de um retardamento químico no início 

da ignição até o começo da queima do grão propelente, tal como observado num 

motor automotivo de ciclo Otto. Tal retardamento tem origem do aquecimento da 

superfície do grão bem como da transferência de calor devido a uma reação 

exotérmica no que diz respeito a degradação do aglomerante. Este tempo pode ser 

estimada partir de: 

 

𝑡 = {
𝑘𝜌𝑐𝑜𝑚𝑏𝜋

2𝐹
[

𝐸/𝑅̅

1 − 1.04𝑙𝑛 (
𝐹
𝐵)
− 𝑇0]}

2

 

 

Com k a condutividade térmica do propelente, F a taxa de transferência de calor a 

partir do ignitor, B o fator pré-exponencial da equação de Arrhenius, E a energia de 

ativação para a reação de ignição, 𝜌𝑐𝑜𝑚𝑏  a massa específica do combustível, 𝑅̅ a 

constante dos gases perfeitos e T0 a temperatura inicial do conjunto grão e espaço 
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vazio da câmara de combustão. Tal expressão leva em conta os da degradação do 

aglomerante e de reações exotérmicas do processo de ignição. 

 O efeito da pressão no retardamento da ignição é dado por relação empírica 

proposta por Baer e Fishman apresentada em Kuo (1984) 

 

𝑡 = [(
𝑑

𝑄̇2
)

3

+ (
𝑏3

𝑝6,15
)]

1/3

 

 

Com 𝑄̇ a taxa de transferência de calor para o grão, d e b são fatores experimentais 

e p, a pressão no interior da câmara de combustão. O que se nota é que a pressão 

possui influência inversamente proporcional, isto é, quanto maior for, menor o tempo 

de retardamento da ignição. Isto se deve ao fato de a pressão aumentar a taxa de 

reatividade química das substâncias nas reações que se processam durante a 

ignição, acelerando tal processo, conforme será apresentado na seção 4.1.4.4 a 

partir do trabalho de Maccio (1998). 

 

4.1.4.2. O processo de combustão 

 

 Simplificadamente, segundo Kuo (1984), após a ignição o combustível e 

oxidante se degradam formando uma mistura na superfície do grão-propelente, para 

que tal ocorra é necessário que haja a cisão do aglomerante por meio de uma 

reação de degradação deste, em geral um polímero, formando monômeros e gases. 

 Para que a combustão se processe é necessário que haja mistura de oxidante 

e combustível tal como em qualquer processo de combustão. Entretanto como estes 

não estão na fase líquida ou gasosa, mas sim numa mistura entre fases sólidas ou 

sólida e gasosa (combustível e oxidante, respectivamente) a mistura não ocorre de 

maneira homogênea como ocorre num motor a combustão interna dado o swirl 
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conforme a mistura é injetada no cilindro, mas sim por meio de difusão do oxidante 

através do grão de combustível, acelerada por pressões de maior magnitude. 

 Conforme será apresentado em 4.1.4.4, a degradação do aglomerante e 

oxidante, outrora na fase sólida, acarretam na formação de substâncias que gasosas 

que, ao se combinarem por intermédio de reações química exotérmicas, formam 

uma chama. Dada a característica exotérmica do processo, calor é transferido para 

o grão-propelente que, dada a ignição, passa a se decompor alimentando tal chama. 

 

4.1.4.3. Combustíveis sólidos homogêneos 

 

 Exemplos destes combustíveis são a nitroglicerina e a nitrocelulose, sendo 

estes caracterizados pelos componentes (oxidante e comburente) serem pré-

misturados, diferentemente dos combustíveis sólidos compostos ou heterogêneos. 

Esta homogeneidade de mistura traz vantagens no que tange os aspectos 

construtivos tendo em vista que o sólido de combustível pode ser moldado no 

interior da câmara ou extrudados com certa facilidade, desta forma, pode-se ter 

grãos-propelentes de diversos formatos. Esta multiplicidade de formas construtivas 

representa uma vantagem quando se deseja taxas de queimas adequadas ou 

mesmo adequação do grão a geometria do artefato ao qual será instalado. 

 Uma vantagem deste combustível em relação ao composto, segundo Kuo 

(1984) é o fato de não formar fumaça dado que em sua combustão não há formação 

ácido clorídrico, substância que condensa de maneira relativamente fácil quando em 

contato com o vapor de água quente na região de escape (ou pluma) do sistema 

propulsor. Como desvantagem cita-se o fato de ter menor impulso específico em 

relação aos combustíveis heterogêneos, restringindo-o a aplicações de média e 

pequena potências, tais como mísseis pequenos ou de curto alcance. 

 Kuo (1984) traz algumas características do processo de combustão que se 

processa a partir da ignição destes combustíveis, sendo tal análise limitada ao 

processo se desenvolvendo em regime permanente, isto é, já se supões que o 

período transiente decorrente da ignição até estabilização da chama já tenha sido 
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completamente desenvolvido. A figura 4.7 traz uma ilustração particular acerca dos 

variados extratos do conjunto combustível, chama e gases durante o processo de 

combustão. 

 

 

Figura 4.7 – Regiões típicas durante a queima de um propelente sólido homogêneo 

 

Após ignição e estabelecimento de condição de equilíbrio do processo ao que 

se refere a constância do processo de queima do propelente, nota-se que há, na 

fronteira da face em degradação do combustível uma região pré-aquecida bastante 

diminuta na qual não há qualquer tipo de reação dada a temperatura não tão 

elevada a ponto de garantir energia de ativação necessária. Atravessando tal região, 

os componentes do grão-propelente chegam a região de degradação na qual as 

temperaturas são de tal magnitude que permitem a cisão de moléculas de certos 

componentes, como é o caso da ligação entre CO2 e NO2 que passa a ser desfeita. 

Esta degradação implica em produtos que passam a ser reagentes de outras 

reações, sendo o balanço global da energia destas reações de degradação e 

formação positivo, isto é, libera-se mais energia do que se consome, caracterizando 

um processo exotérmico, o que garante a alimentação energética necessária para 

que o processo da combustão e degradação do grão-propelente continue ocorrendo. 
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Em pressões adequadas (~10 MPa segundo Kuo, 1984) nota-se a formação 

de duas frentes de chama distintas separadas por uma zona negra, tal como 

ilustrado pela figura 4.7. A chama secundária, em geral, esta demasiadamente longe 

da primária - esta última próxima a face de degradação do grão –propelente – não 

influindo de maneira significativa no processo de queima do propelente, ou seja, este 

processo é diretamente controlado pela chama primária, quando há, são efeito este 

decorrente das simultâneas reações químicas de degradação e formação se 

processando a partir dos produtos da combustão. 

No que tange os aspectos de modelagem matemática dos processos 

matemáticos é necessário avaliar a transferência de calor ao propelente bem como 

as taxas nas quais as reações se processam, tendo em vista a grande correlação 

que há entre tais fenômenos, isto é, quanto maior a reatividade, mais intensa a 

reação química e, consequentemente, maior a quantidade de calor gerado no 

processo a ser transferido tanto para os gases queimados fronteiriços, estrutura e 

grão-propelente. Kuo (1984) apresenta uma abordagem bastante detalhada acerca 

dos processos de queima para as fases gasosas e não-gasosas de maneira 

separada. Aqui a análise será restrita somente aos processos necessários para 

obtenção das temperaturas nas frentes de chama previamente mencionadas, 

temperatura da superfície do grão e a taxa de transferência de calor na sua 

superfície de degradação. É digno de nota que com estes parâmetros e sabendo 

como varia o diâmetro do grão bem como sua condutividade, pode-se estimar com 

alguma a taxa de transferência de calor para a carcaça da câmara de combustão 

durante o processo completo de queima a partir da aplicação do balanço de energia 

um volume de controle de fronteira móvel. 

 A taxa de queima do propelente está relacionada a temperatura da superfície 

do grão segundo uma relação próxima a aquela da equação de Arrhenius (a ser 

apresentada na seção 4.1.4.4), dada por: 

 

𝑅 = 𝑒
−

𝐸𝑎
2𝑅̅𝑇𝑠𝑢𝑝𝑒𝑟𝑓í𝑐𝑖𝑒 
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Na qual 𝐸𝑎  é a energia de ativação para a degradação do grão propelente, 𝑅̅  a 

constante dos gases ideais e Tsuperfície a temperatura da superfície do grão expostas 

aos produtos da combustão. 

 A taxa de transferência de calor a superfície do grão está intimamente 

relacionada aos gases formados durante a combustão. Aplicando o balanço de 

energia à superfície do propelente em queima: 

 

𝑞̇𝑠𝑢𝑝𝑒𝑟𝑓í𝑐𝑖𝑒 = 𝑘𝑔𝑎𝑠𝑒𝑠
𝑑𝑇

𝑑𝑥
|
𝑔𝑎𝑠𝑒𝑠,𝑠𝑢𝑝

= 𝜌𝑝𝑟𝑜𝑝𝑒𝑙𝑒𝑛𝑡𝑒𝑅(𝑐𝑔𝑎𝑠𝑇𝑠𝑢𝑝 − 𝑐𝑝𝑟𝑜𝑝𝑇0 − 𝑞𝑠𝑢𝑝,𝑑𝑒𝑔𝑟𝑎𝑑) 

 

Na qual k é a condutividade térmica dos gases, c o capacidade térmica específica 

dos gases (gás) e propelente (prop), 𝑞𝑠𝑢𝑝,𝑑𝑒𝑔𝑟𝑎𝑑  o calor por unidade de massa 

demandado para a degradação dogrão-propelente, 𝜌𝑝𝑟𝑜𝑝𝑒𝑙𝑒𝑛𝑡𝑒 a massa específica do 

propelente e R a taxa de reação já definida e T0 a temperatura inicial do propelente. 

 Tal taxa de transferência de calor, como já supracitado, é decorrente da frente 

de chama primária formação nas vizinhanças da superfície em degradação, desta 

forma sendo dependente, portanto, da cinética da reação de formação desta. Em 

termos de balanço de energia entre o grão-propelente a sua temperatura inicial e o 

limite mais distante da chama primária tem-se a temperatura desta. 

 

𝑇𝑐ℎ𝑎𝑚𝑎 𝑝𝑟𝑖𝑚. =
𝑐𝑝𝑟𝑜𝑝𝑇0 + 𝑞𝑠𝑢𝑝,𝑑𝑒𝑔𝑟𝑎𝑑 + 𝑞𝑐ℎ𝑎𝑚𝑎 𝑝𝑟𝑖𝑚

𝑐𝑔𝑎𝑠
 

 

Com 𝑞𝑐ℎ𝑎𝑚𝑎 𝑝𝑟𝑖𝑚 o calor consumido para a formação da chama primária. 
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4.1.4.4. Combustíveis sólidos compostos 

 

 Kuo (1984) classifica combustíveis sólidos compostos como aqueles que 

possuem oxidante finamente particulado disperso no grão propelente. Devido a esta 

característica construtiva, um número grande de reações químicas ocorrem durante 

a combustão deste tipo de combustível, dificultando uma análise numérica do 

problema.  

Miccio (1998) propõe a divisão da combustão em cinco reações químicas 

distintas a serem consideradas na modelagem do problema a fim de se obter 

estimativas da temperatura da superfície em queima do grão-propelente bem como 

da taxa de queima a partir da avaliação das reações do aglomerante e oxidante. 

Genericamente, seguindo a nomenclatura de Miccio (1998), estas cinco equações 

são dadas pela pirólise, isto é decomposição a alta temperatura, do aglomerante: 

 

𝐴𝑠ó𝑙𝑖𝑑𝑜 → 10𝐵𝑔𝑎𝑠𝑜𝑠𝑜  (1) 

Seguida pela dissociação do oxidante: 

 

𝐶𝑠ó𝑙𝑖𝑑𝑜 → 𝐷𝑔𝑎𝑠𝑜𝑠𝑜 + 𝐸𝑔𝑎𝑠𝑜𝑠𝑜 (2) 

 

A equação que segue diz respeito a a oxidação heterogênea do aglomerante 

(espécie A)  por uma substância na fase gasosa (E), oriunda do processo de 

dissociação do oxidante (C): 

 

1

5
𝐴𝑠ó𝑙𝑖𝑑𝑜 + 𝐸𝑔𝑎𝑠𝑜𝑠𝑜 → 4𝐹𝑔𝑎𝑠𝑜𝑠𝑜 

(3) 

 

A formação da chama de oxidação devido os produtos da dissociação do oxidante, a 

temperatura elevadas é dada por: 
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𝐷𝑔𝑎𝑠𝑜𝑠𝑜 +
1

2
𝐸𝑔𝑎𝑠𝑜𝑠𝑜 → 2𝐹𝑔𝑎𝑠𝑜𝑠𝑜 

(4) 

 

Nota-se que o mesmo produto da oxidação do aglomerante é formado nesta reação 

e também na reação de formação da chama a partir dos produtos da dissociação do 

aglomerante e do oxidante 

 

𝐵𝑔𝑎𝑠𝑜𝑠𝑜 +
1

2
𝐸𝑔𝑎𝑠𝑜𝑠𝑜 → 2𝐹𝑔𝑎𝑠𝑜𝑠𝑜 

(5) 

 

 O modelo proposto baseia-se na hipótese das espécies gasosas serem 

supostas como gás perfeito e em escoamento unidimensional ao longo da direção 

axial do propelente ou câmara de combustão, tal como será suposto para a 

modelagem preliminar do escoamento induzido pela queima do grão propelente a 

posteriori. 

 Aplicando o balanço de massa ao aglomerante e oxidante, respectivamente, 

levando em conta as reações das quais participam: 

 

𝑑𝑚𝑎𝑔𝑙𝑜𝑚𝑒𝑟𝑎𝑛𝑡𝑒

𝑑𝑡
= −𝑀𝐴∫ (𝑅1 +

𝑅3
5
) 𝑑𝐴

𝐴𝑎𝑔𝑙𝑜𝑚𝑒𝑟𝑎𝑛𝑡𝑒

 

𝑑𝑚𝑜𝑥𝑖𝑑𝑎𝑛𝑡𝑒

𝑑𝑡
= −𝑀𝐶∫ (𝑅2)𝑑𝐴

𝐴𝑜𝑥𝑖𝑑𝑎𝑛𝑡𝑒

 

 

Com 𝑅𝑖 a taxa de reação da espécie na i-ésima equação, em 𝑘𝑚𝑜𝑙 (𝑚2𝑠)⁄ , e 𝑀𝑖 a 

massa molecular de cada espécie (em kg/kmol). Ou seja, a variação da quantidade 

total de tais espécies é proporcional a taxa com que são consumidas nas reações de 

pirólise do aglomerante e dissociação do oxidante. 
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 Prosseguindo com a aplicação da equação da continuidade ao volume de 

controle (V.C.) definido pelo volume total do sólido do grão-propelente (por exemplo 

a câmara de combustão de um foguete), como somente gás deixando o V.C.: 

 

𝑑𝜌𝑔𝑎𝑠𝑒𝑠

𝑑𝑡
+ ∇ ∙ (𝜌𝑢⃗ ) = 0 

 

E sabendo que, da equação dos gases perfeitos: 

 

𝜌 =
𝑚

𝑉
=
𝑝

𝑅𝑇
 

 

E então, em termos de concentração: 

 

𝐶 =
𝑛

𝑉
=
𝑚

𝑀𝑉
=
𝑝

𝑅̅𝑇
=
𝜌

𝑀
⟹ 𝜌 = 𝐶𝑀 

 

Então, na equação da continuidade para o escoamento na direção axial (z): 

 

𝑑(𝑀𝑔𝑎𝑠𝑒𝑠𝐶𝑔𝑎𝑠𝑒𝑠)

𝑑𝑡
+
𝜕(𝐶𝑔𝑎𝑠𝑒𝑠𝑀𝑔𝑎𝑠𝑒𝑠𝑢𝑧)

𝜕𝑥
= 0 

 

O que demonstra a variação da massa de gases oriunda da combustão, no caso, da 

espécie F. 

 Supondo o mesmo volume de controle já explicitado tem-se do balanço de 

massa para cada uma das espécies gasosas envolvidas no processo, em termos da 

concentração molar 𝑦𝑖 = 𝑛𝑖/𝑛, com 𝑛 o número de mols: 
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𝜕𝑦𝑖
𝜕𝑡

= −𝑢𝑧
𝜕𝑦𝑖
𝜕𝑧

+
𝜕

𝜕𝑧
(𝐷
𝜕𝑦𝑖
𝜕𝑧
) +

𝜕

𝜕𝑦
(𝐷
𝜕𝑦𝑖
𝜕𝑦
)

⏟                
𝐿𝑒𝑖 𝑑𝑒 𝐹𝑖𝑐𝑘

+ 𝐺𝑖 

 

Com 𝐺𝑖 a taxa de geração da i-ésima, sendo esta dependente da reação química 

correspondente. Para a espécie B ela é dada por −𝑅5 (taxa molar de consumo da 

espécie B na reação de combustão com a espécie E oriunda do oxidante), para a D 

por −𝑅4 e para a E, −0,5(𝑅4 + 𝑅5). 

 Do balanço de energia no V.C. considerado para a fase condensada, tem-se: 

 

𝜕𝑇

𝜕𝑡
=

1

𝐶𝑠ó𝑙𝑖𝑑𝑜𝛾𝑠ó𝑙𝑖𝑑𝑜
(
𝜕2𝑇

𝜕𝑧2
+
𝜕2𝑇

𝜕𝑦2
) 

 

Com T a temperatura e 𝛾  o calor específico molar. Analogamente para a fase 

gasosa: 

 

𝜕𝑇

𝜕𝑡
=

1

𝐶𝑔𝑎𝑠𝑜𝑠𝑜𝛾𝑔𝑎𝑠𝑜𝑠𝑜
(
𝜕

𝜕𝑧
(𝑘
𝜕𝑇

𝜕𝑧
) +

𝜕

𝜕𝑦
(𝑘
𝜕𝑇

𝜕𝑦
)) − 𝑢𝑧

𝜕𝑇

𝜕𝑧
−

1

𝐶𝑔𝑎𝑠𝑜𝑠𝑜𝛾𝑔𝑎𝑠𝑜𝑠𝑜
(𝑅4𝐻4 + 𝑅5𝐻5) 

 

Com k a condutividade térmica e H a entalpia molar das reações listadas. Ou seja, a 

variação de temperatura é função da condução de temperatura em cada uma das 

fases, descontadas as variações oriundas do escoamento da fase gasosa e da 

energia requerida para realização dos processos químicos. 

 A taxa de reação de cada uma das espécies é dada pela equação de 

Arrhenius corrigida pela concentração dos produtos da pirólise e dissociação bem 

como pela pressão associada ao processo. De Atkins (2008), tem-se: 
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𝑅 = 𝐴𝑒
−
𝐸𝑎
𝑅̅𝑇 

 

Com R a taxa de reação, A o fator pré-exponencial, Ea a energia de ativação para 

determinado processo químico, 𝑅̅ a constante dos gases ideais e T a temperatura na 

qual a reação está se processando.Com as correções propostas por Miccio (1998): 

 

𝑅𝑗 = 𝐴𝑗𝑒
−
𝐸𝑎𝑗
𝑅̅𝑇𝑝𝜐𝑗𝑦𝐵

𝜇𝑗,𝐵𝑦𝐷
𝜇𝑗,𝐷𝑦𝐸

𝜇𝑗,𝐸 

  

Com p a pressão na qual a reação está se processando, 𝜐𝑗 o expoente de pressão 

para a j-ésima reação, 𝜇𝑗,𝑖  o expoente de fração molar da espécie i na j-ésima 

reação. 

Destas equações, pode-se estimar o comportamento das espécies bem como 

da temperatura durante a queima do combustível sólido. Nota-se que, conforme já 

comentado, o tratamento matemático para o caso de combustíveis sólidos 

compostos é bastante mais complicado do que para os homogêneos. Isto se deve 

as múltiplas reações que ocorrem simultaneamente e que necessitam de tratamento 

mais delicado no que tange sua simulação.  

A figura 4.8 apresenta o resultado das simulações realizadas por Miccio(1998) 

remetendo a variação da temperatura da superfície do combustível sólido em função 

da pressão na qual as reações estão se processando. Tal levantamento é feito para 

duas geometrias distintas: SAND e SPHE. A primeira diz respeito a uma geometria 

do tipo “sanduíche” no que se refere ao oxidante estar estar disposto entre camadas 

de combustível,  já a segunda se remete a propelente com partículas esféricas de 

oxidante. 
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Figura 4.8 – Variação da temperatura na superfície do grão-propelente em função da pressão 

de reação 

Da análise do resultado o que se nota é uma aumento da temperatura da superfície 

com a pressão, sendo este maior para a geometria SPHE do que para a SAND isto 

em muito pela maior homogeneidade na primeira configuração, o que aumenta a 

área de contato entre o combustível e o oxidante, tornando mais eficiente os 

processos de transferência de calor. Também se nota que a temperatura do 

aglomerante tende a ser maior do que aquela do oxidante isto porque sua 

dissociação envolve uma pirólise caracterizada pela ocorrência em altas 

temperaturas. 

 

4.2. ESCOAMENTO COMPRESSÍVEL BIDIMENSIONAL 

 

4.2.1. Fundamentos 

 

 Shapiro (1953) separa a análise do escoamento em múltiplas dimensões em 

dois casos básicos: escoamento ir rotacional, sem transferência de calor ou atrito, ou 

seja, potencial e aquele com transferência de calor e atrito. O primeiro caso, 
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amplamente discutido é basicamente utilizado para a determinação do escoamento 

dentro de um bocal ao longe da parede ou o escoamento externo ao longe no qual 

há algum corpo imerso. Tal é a mesma analogia feita pela mecânica dos fluidos 

incompressíveis ao analisar o escoamento ao redor de corpos imersos tais como 

fólios, conforme apresentado em Anderson (1988) e Munson (2004). Tal 

simplificação é de sobremodo importante para avaliação de muitos através de 

técnicas comuns ao escoamento supersônico e subsônico (método das variações 

infinitesimais), ou distintas (transformação para o plano hodográfico em 

escoamentos subsônicos e método das características para supersônicos). O 

segundo caso, por sua vez, é restrito a análise da camada limite, supondo que todos 

os efeitos devido ao atrito e transferência de calor ocorram através delas, sendo elas 

aderidas a fronteira do corpo ou obstáculo ao escoamento. 

 Como um primeiro passo, restringir-se-á a análise do escoamento potencial 

no interior de um bocal convergente-divergente, desta forma serão lançadas 

descrições acerca de cada um dos métodos a serem utilizados para o projeto de um 

dos bocais. Entretanto, conforme atestado em Anderson (2003) e Shapiro (1953), os 

métodos, embora distintos partem todos das equações básicas para o escoamento 

potencial, desta forma a apresentação destes conceitos básicos deve ser 

evidenciada de forma a motivar os desenvolvimentos posteriores. 

 Conforme definido em Anderson (1988 e 2003) e Shapiro (1953), a equação 

da continuidade para regime permanente na forma diferencial é dada pela equação 

4.1: 

 

∇ ∙ (𝜌𝑢⃗ ) = 0 (4.1) 

 

Com 𝑢⃗  o vetor velocidade de um ponto do escoamento. Da teoria potencial tem-se, 

por definição que: 

 

𝑢⃗ = (𝑢, 𝑣, 𝑤) = (
𝜕𝜙

𝜕𝑥
,
𝜕𝜙

𝜕𝑦
,
𝜕𝜙

𝜕𝑧
) 

(4.2) 
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Com 𝜙 uma função escalar que satisfaça: 

∇2𝜙 = 0 

 Para o caso plano, objeto de análise do presente trabalho, o vetor velocidade 

é definido por: 

 

𝑢⃗ = (𝑢, 𝑣) = (
𝜕𝜙

𝜕𝑥
,
𝜕𝜙

𝜕𝑦
) = (𝜙𝑥, 𝜙𝑦) 

(4.3) 

 

Expandindo o divergente da equação (4.1) e substituindo o resultado obtido para o 

caso plano em (4.3): 

 

𝜕(𝜌𝜙𝑥)

𝜕𝑥
+
𝜕(𝜌𝜙𝑦)

𝜕𝑦
= 0 ⟹ 

⟹ 𝜌𝜙𝑥𝑥 + 𝜌𝜙𝑦𝑦 + 𝜙𝑥
𝜕𝜌

𝜕𝑥
+ 𝜙𝑦

𝜕𝜌

𝜕𝑦
= 0  

 

 

(4.4) 

 

 Da definição de número de Mach, já suposto o processo isentrópico por 

hipótese do escoamento potencial: 

 

𝑐2 =
𝜕𝜌

𝜕𝑝
 

(4.5) 

  

 Logo, a fim de obter as derivadas parciais da massa específica do fluído em 

relação a posição ao longo do escoamento é necessário obter alguma expressão 

para 𝜕𝑝 em função do campo de velocidades. A ideia mais natural será a de se valer 

da equação de Euler na forma diferencial (Shapiro, 1953): 
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1

𝜌
𝑑𝑝 = −𝑑 (

𝑢⃗ ∙ 𝑢⃗ 

2
) 

(4.6) 

 

Que substituída com os potenciais de velocidade se torna: 

 

𝑑𝑝 = −𝜌𝑑 (
𝜙𝑥
2 + 𝜙𝑦

2

2
) 

(4.7) 

 

Igualando (4.5) com (4.7): 

 

𝜕𝜌

𝑐2
= −𝜌𝑑 (

𝜙𝑥
2 + 𝜙𝑦

2

2
) 

(4.8) 

 

Derivando (4.8) em relação a x e a y: 

 

𝜕𝜌

𝜕𝑥
= −

𝜌

2𝑐2
(2𝜙𝑥𝜙𝑥𝑥 + 2𝜙𝑦𝜙𝑥𝑦) 

𝜕𝜌

𝜕𝑦
= −

𝜌

2𝑐2
(2𝜙𝑥𝜙𝑥𝑦 + 2𝜙𝑦𝜙𝑦𝑦) 

 

Consequentemente, da equação (4.4): 

 

𝜌𝜙𝑥𝑥 + 𝜌𝜙𝑦𝑦 −
𝜌𝜙𝑥

2𝜙𝑥𝑥
𝑐2

−
𝜌𝜙𝑥𝜙𝑦𝜙𝑥𝑦

𝑐2
−
𝜌𝜙𝑦

2𝜙𝑦𝑦

𝑐2
−
𝜌𝜙𝑥𝜙𝑦𝜙𝑥𝑦

𝑐2
= 0 ⟹  

⟹ (1 −
𝜙𝑥
2

𝑐2
)𝜙𝑥𝑥 + (1 −

𝜙𝑦
2

𝑐2
)𝜙𝑦𝑦 − 2

𝜙𝑥𝜙𝑦𝜙𝑥𝑦

𝑐2
= 0  

 

 

(4.9) 
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Em termos das componentes de velocidade: 

 

(1 −
𝑢2

𝑐2
)
𝜕𝑢

𝜕𝑥
+ (1 −

𝑣2

𝑐2
)
𝜕𝑣

𝜕𝑦
− 2

𝑢𝑣

𝑐2
𝜕𝑢

𝜕𝑦
= 0 ⟹ 

⟹ (𝑐2 − 𝑢2)𝑢𝑥 + (𝑐
2 − 𝑣2)𝑢𝑦 − 𝑢𝑣(𝑢𝑥 − 𝑢𝑦) = 0  

(4.10) 

 

(4.11) 

 

 

4.2.2. Métodos das características 

 

 O método das características, segundo Anderson (2003) consiste em 

determinar linhas características no escoamento para as quais a variação das 

propriedades ao longo das direções do sistema de coordenadas é indeterminada, tal 

como em linhas de Mach de propagação de choque infinitesimais ao longo do 

escoamento. A partir da determinação destas, por meio das equações fundamentais 

já desenvolvidas para o escoamento compressíveis e das condições de 

compatibilidade, tem-se a determinação de cada ponto de intersecção entre as 

características. Desta forma há a possibilidade de se saber as propriedades ao 

longo de cada ponto do sistema definido dada uma malha gerada. Ou seja, é 

possível se determinar tantos nós quanto desejados dada uma malha para o 

escoamento. 

 Três diferentes abordagens para a determinação do equacionamento 

fundamental são apresentadas na bibliografia. Hodge (1995) parte de conceitos mais 

fundamentais acerca do escoamento potencial, avaliando um elemento infinitesimal 

exclusivamente para a determinação das expressões básicas para avaliação do 

método característico. Shapiro (1953) dá continuidade à sua abordagem para 

escoamentos potenciais supersônicos, demonstrando muito além do 

equacionamento fundamental, inúmeros casos fundamentais tais como influência de 

paredes curvas no escoamento e projeto de bocais de túneis de vento. Por fim, 

Anderson tem uma abordagem pouco mais direta em relação ao seus pares, 

avaliando o método das características inicialmente de uma maneira aproximada ao 
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método computacional, passando por uma definição pouco mais formal das linhas 

características até determinar, finalmente, as equações de compatibilidade.  

Tanto Hodge (1995) quanto Anderson (2003) fazem alusão a dois casos 

notáveis a serem discutidos posteriormente: pontos internos a malha e pontos de 

parede. O primeiro faz uma abordagem bem mais detalhada, lançando mão das 

equações que regem a posição de cada um dos pontos enquanto Anderson somente 

faz aplicação de conceitos fundamentais. Os conceitos a serem apresentados a 

partir de agora serão um compilado daqueles encontrados em Anderson (2003) e 

Hodge (1995) aproveitando o melhor possível os conceitos por eles apresentados a 

fim de, por meio de uma rápida revisão, apresentar consistentemente o método em 

questão. 

 A figura (4.9) extraída de Anderson (2003) traz os nós de uma malha fluida 

discreteada com o vetor velocidade plano para um ponto qualquer do escoamento. É 

importante ressaltar que todos os pontos estão sobre uma linha característica do 

escoamento e que o vetor velocidade faz um ângulo 𝜇 em relação a este ente. Tal 

situação ilustrará de maneira bastante interessante o fato das linhas de Mach serem 

linhas características do escoamento, resultando importante para o projeto dos 

bocais bidimensionais. 

 

 

Figura 4.9 – Malha fluida com linha característica (Anderson, 2003) 
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 Sabe-se que o ponto posterior na direção x na malha fluida pode ser 

determinado a partir da expansão em série de Taylor da projeção da velocidade 

naquela direção, dado por: 

 

𝑢𝑖+1,𝑗 = 𝑢𝑖,𝑗 +∑(
𝜕𝑘𝑢

𝜕𝑥𝑘
)
𝑖,𝑗

Δ𝑥𝑘 
(4.12) 

 

Da equação da continuidade na forma apresentada por (4.10) é possível se isolar o 

termo 𝜕𝑢/𝜕𝑥, resultando em: 

 

𝜕𝑢

𝜕𝑥
=
2
𝑢𝑣
𝑐2
𝜕𝑢
𝜕𝑦
− (1 −

𝑣2

𝑐2
)
𝜕𝑣
𝜕𝑦

(1 −
𝑢2

𝑐2
)

 

 

(4.13) 

  

 Com (4.13) o próximo ponto da malha pode ser determinado para o caso de 

uma aproximação linear. Desta expressão também é possível perceber que se a 

componente da velocidade na direção x do escoamento for a sônica local, o termo 

de variação desta componente em função da posição ao longo do eixo x é uma 

indeterminação. Nota-se que para cada ponto de uma curva que varia de tal maneira 

não se sabe a variação já explicitada, mas sim as propriedades a cada ponto. Para 

este curva se dá o nome de linha característica de um escoamento, tal como 

definido em Anderson (2003). 

 Da figura 4.9 pode-se notar que, de trigonometria básica no triângulo de 

velocidades, para o caso notável em que 𝑢 = 𝑐: 

 

𝑠𝑒𝑛(𝜇) =
𝑢

‖𝑢⃗ ‖
⟹ 𝜇 = 𝑎𝑟𝑐𝑠𝑒𝑛 (

𝑐

‖𝑢⃗ ‖
) ⟹ 𝜇 = 𝑎𝑟𝑐𝑠𝑒𝑛 (

1

𝑀
)  

(4.14) 
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Que é a própria definição de ângulo de Mach conforme apresentado em Zucker 

(1977). Desta forma pode-se afirmar que as linhas de Mach são linhas 

características. A pergunta que resta é se somente estas linhas são características 

ou se há outras. Ainda baseado em Anderson (2003), lança-se mão da equação da 

continuidade sob a forma de potenciais de velocidade: 

 

(1 −
𝜙𝑥
2

𝑐2
)𝜙𝑥𝑥 + (1 −

𝜙𝑦
2

𝑐2
)𝜙𝑦𝑦 − 2

𝜙𝑥𝜙𝑦𝜙𝑥𝑦

𝑐2
= 0  

(4.9) 

 

Diferenciando 𝜙𝑥 e 𝜙𝑦: 

 

𝑑𝜙𝑥 =
𝜕𝜙𝑥
𝜕𝑥

𝑑𝑥 +
𝜕𝜙𝑥
𝜕𝑦

𝑑𝑦 ⟹ 𝑑𝜙𝑥 = 𝜙𝑥𝑥𝑑𝑥 + 𝜙𝑥𝑦𝑑𝑦  
(4.15) 

𝑑𝜙𝑦 =
𝜕𝜙𝑦

𝜕𝑥
𝑑𝑥 +

𝜕𝜙𝑦

𝜕𝑦
𝑑𝑦 ⟹ 𝑑𝜙𝑦 = 𝜙𝑦𝑥⏟

=𝜙𝑥𝑦
(𝑆𝑐ℎ𝑤𝑎𝑟𝑡𝑧)

𝑑𝑥 + 𝜙𝑦𝑦𝑑𝑦  
(4.16) 

 

Tem-se um sistema linear com três equações e três incógnitas (𝜙𝑥𝑥, 𝜙𝑦𝑦, 𝜙𝑥𝑦) dado 

por: 

 

(
1 −

𝜙𝑥
2

𝑐2
1 −

𝜙𝑦
2

𝑐2
−2

𝜙𝑥𝜙𝑦

𝑐2

𝑑𝑥 0 𝑑𝑦
0 𝑑𝑦 𝑑𝑥

)(

𝜙𝑥𝑥
𝜙𝑦𝑦
𝜙𝑥𝑦

) = (

0
𝑑𝜙𝑥
𝑑𝜙𝑦

) 

 

A solução deste sistema linear fornece as seguintes soluções: 
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𝜙𝑥𝑥 =
𝜕𝑢

𝜕𝑥
=

(1 −
𝜙𝑦
2

𝑐2
)𝑑𝑥𝑑𝜙𝑥 + 2

𝜙𝑥𝜙𝑦
𝑐2

𝑑𝑥𝑑𝜙𝑥 − (1 −
𝜙𝑦
2

𝑐2
)𝑑𝑦𝑑𝜙𝑦

(1 −
𝜙𝑦2

𝑐2
)𝑑𝑥2 + 2

𝜙𝑥𝜙𝑦
𝑐2

𝑑𝑥𝑑𝑦 + (1 −
𝜙𝑥2

𝑐2
) 𝑑𝑦2

 

𝜙𝑦𝑦 =
𝜕𝑣

𝜕𝑦
=
−(1 −

𝜙𝑥
2

𝑐2
) 𝑑𝑥𝑑𝜙𝑥 + 2

𝜙𝑥𝜙𝑦
𝑐2

𝑑𝑥𝑑𝜙𝑦 + (1 −
𝜙𝑥
2

𝑐2
) 𝑑𝑦𝑑𝜙𝑦

(1 −
𝜙𝑦2

𝑐2
) 𝑑𝑥2 + 2

𝜙𝑥𝜙𝑦
𝑐2

𝑑𝑥𝑑𝑦 + (1 −
𝜙𝑥2

𝑐2
) 𝑑𝑦2

 

𝜙𝑥𝑦 =
𝜕𝑢

𝜕𝑦
=
𝜕𝑣

𝜕𝑥
=

(1 −
𝜙𝑥
2

𝑐2
) 𝑑𝑦𝑑𝜙𝑥 + (1 −

𝜙𝑦
2

𝑐2
)𝑑𝑥𝑑𝜙𝑦

(1 −
𝜙𝑦2

𝑐2
)𝑑𝑥2 + 2

𝜙𝑥𝜙𝑦
𝑐2

𝑑𝑥𝑑𝑦 + (1 −
𝜙𝑥2

𝑐2
) 𝑑𝑦2

 

 

Ou seja, conforme notado por Anderson (2003) as soluções são da forma: 

 

𝜙𝑖𝑗 =
𝑁

𝐷
 

 

 A figura 4.10, extraída de Anderson (2003) traz um ponto fluido A escoando 

ao longo de determinada direção e sentido definido pelo ângulo 𝜃  do vetor 

velocidade em relação ao eixo das abscissas. Esta direção é qualquer e define 

determinamentemente as características do escoamento neste ponto. Isto pode ser 

dito porque para algum ângulo 𝜃 há alguma combinação de dx e dy tal que levem o 

denominador das soluções assumirem o valor nulo implicando no fato de, embora se 

saiba que cada uma das variações dos potenciais de velocidade neste ponto sejam 

conhecidas, sua variação em determinada direção passa a não ser.  
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Figura 4.10 – Ponto A de um escoamento se movendo instantaneamente na direção 𝜃 em relação a 

horizontal (Anderson, 2003) 

 

Assumir uma direção na qual se faça o denominador dos valores de 𝜙𝑖𝑗 

tender a zero é fisicamente inconsistente, tendo em vista que nunca haverá uma 

variação local de velocidades que tenda ao infinito para qualquer condição no 

escoamento de um fluído. A única saída para contornar esta problemática é assumir 

o valor do numerador da solução também nulo, acarretando numa indeterminação 

do tipo 0/0 para a variação das componentes da velocidade do ponto. Isto implica 

nestas variações de velocidades indeterminadas. Ou seja: 

 

𝜕𝑢

𝜕𝑥
=
𝜕𝑢

𝜕𝑦
=
𝜕𝑣

𝜕𝑦
=
𝜕𝑣

𝜕𝑦
→
0

0
 

(4.17) 

 

Tal fato alude àquele já mencionado para as linhas características, entes nos quais 

não se tem a determinação da variação das propriedades ao longo das direções do 

escoamento. Tomando o denominador das soluções de 𝜙𝑖𝑗: 

 

(1 −
𝜙𝑦
2

𝑐2
)𝑑𝑥2 + 2

𝜙𝑥𝜙𝑦

𝑐2
𝑑𝑥𝑑𝑦 + (1 −

𝜙𝑥
2

𝑐2
)𝑑𝑦2 = 0 ⟹ 

⟹ (1 −
𝑣2

𝑐2
)𝑑𝑥2 + 2

𝑢𝑣

𝑐2
𝑑𝑥𝑑𝑦 + (1 −

𝑢2

𝑐2
)𝑑𝑦2 = 0 

(4.18) 

 

(4.19) 
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Dividindo ambos lados de (4.19) por dx2: 

 

(1 −
𝑣2

𝑐2
) + 2

𝑢𝑣

𝑐2
𝑑𝑦

𝑑𝑥
+ (1 −

𝑢2

𝑐2
) (
𝑑𝑦

𝑑𝑥
)
2

= 0 
(4.20) 

 

  

 Conforme já explanado, forçando a solução ser da forma 0/0 introduz-se o 

conceito de linhas características. No caso particular em questão, sua direção local 

no ponto A é definida por: 

 

𝑑𝑦

𝑑𝑥
= (

𝑑𝑦

𝑑𝑥
)
𝑐𝑎𝑟

 

 

Substituindo esta expressão na equação (4.20) obtém-se, finalmente a expressão: 

 

(1 −
𝑣2

𝑐2
) + 2

𝑢𝑣

𝑐2
(
𝑑𝑦

𝑑𝑥
)
𝑐𝑎𝑟
+ (1 −

𝑢2

𝑐2
) (
𝑑𝑦

𝑑𝑥
)
𝑐𝑎𝑟

2

= 0 
(4.21) 

 

 

 Salta aos olhos que a equação (4.21) é uma função quadrática em dx/dy, 

desta forma sua solução é demasiadamente simples e dada por (4.22): 

 

(
𝑑𝑦

𝑑𝑥
)
𝑐𝑎𝑟

=
−
2𝑢𝑣
𝑐2

±√
4𝑢2𝑣2

𝑐4
− 4(1 −

𝑣2

𝑐2
) (1 −

𝑢2

𝑐2
)

2 (1 −
𝑢2

𝑐2
)

⟹ 

⟹ (
𝑑𝑦

𝑑𝑥
)
𝑐𝑎𝑟

=
−
𝑢𝑣
𝑐2
±√

𝑢2𝑣2

𝑐4
− 1 −

𝑣2𝑢2

𝑐4
+
𝑢2 + 𝑣2

𝑐2

(1 −
𝑢2

𝑐2
)

⟹ 
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⟹ (
𝑑𝑦

𝑑𝑥
)
𝑐𝑎𝑟

=
−
𝑢𝑣
𝑐2
±√

‖𝑢⃗ ‖2

𝑐2
− 1

(1 −
𝑢2

𝑐2
)

⟹  

⟹ (
𝑑𝑦

𝑑𝑥
)
𝑐𝑎𝑟

=
−
𝑢𝑣
𝑐2
± √𝑀2 − 1

(1 −
𝑢2

𝑐2
)

 

 

 

(4.22) 

 

 

 Nota-se que a solução pode ser real e dupla, simples ou complexa 

dependendo do regime de escoamento que se está avaliando.  Para o caso de 

regime supersônico, há duas possíveis direções para as linhas características, 

conforme pode ser notado na figura 4.11 extraída de Anderson (2003). Para o caso 

do escoamento sônico, apenas uma direção característica existe. Em contrapartida 

para o escoamento subsônico somente soluções no domínio complexo são obtidas, 

daí o fato de não ser comum utilizar este método para a solução de problemas de 

escoamentos subsônicos. 

 

 

Figura 4.11 – Linhas características para o escoamento supersônico (Anderson, 2003) 
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 Um último par de substituições pode ser feita na equação (4.22). Estas estão 

relacionadas a definição de cada uma das componentes do vetor velocidade a partir 

do módulo da velocidade. Sejam elas: 

 

𝑢 = ‖𝑢⃗ ‖𝑐𝑜𝑠𝜃 (4.23) 

𝑣 = ‖𝑢⃗ ‖𝑠𝑒𝑛𝜃 (4.24) 

   

Logo:  

(
𝑑𝑦

𝑑𝑥
)
𝑐𝑎𝑟

=
−
‖𝑢⃗ ‖2𝑠𝑒𝑛𝜃𝑐𝑜𝑠𝜃

𝑐2
± √𝑀2 − 1

(1 −
‖𝑢⃗ ‖2 cos2 𝜃

𝑐2
)

⟹ 

⟹ (
𝑑𝑦

𝑑𝑥
)
𝑐𝑎𝑟

=
−𝑀2𝑠𝑒𝑛𝜃𝑐𝑜𝑠𝜃 ± √𝑀2 − 1

(1 −𝑀2 cos2 𝜃)
 

 

 

 

(4.25) 

 

Mas, da definição de ângulo de Mach: 

𝑠𝑒𝑛𝜇 =
1

𝑀
⟹ 𝑀2 =

1

𝑠𝑒𝑛2𝜇
 

(4.26) 

 

Substituindo (4.26) em (4.25): 

(
𝑑𝑦

𝑑𝑥
)
𝑐𝑎𝑟

=

−
𝑠𝑒𝑛𝜃𝑐𝑜𝑠𝜃
𝑠𝑒𝑛2𝜇

± √
1 − 𝑠𝑒𝑛2𝜇
𝑠𝑒𝑛2𝜇

(1 −
cos2 𝜃
𝑠𝑒𝑛2𝜇

)
 

 

(4.27) 

 

O que resulta, segundo Anderson (2003), em: 

(
𝑑𝑦

𝑑𝑥
)
𝑐𝑎𝑟

= 𝑡𝑔(𝜃 ± 𝜇) 
(4.28) 
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 Isto comprova o exposto anteriormente de que linhas de Mach são, de fato, 

linhas características do escoamento. Fato este a ser utilizado no projeto do bocal 

divergente a partir de suas linhas de Mach supostas oriundas do contorno da seção 

de área mínima, a garganta. 

 Do exposto, é possível delimitar as equações de compatibilidade para o 

método das características, permitindo assim sua aplicação na determinação da 

superfície da porção divergente do bocal convergente-divergente do míssil. Partindo 

do numerador da expressão desenvolvida para 𝜙𝑥𝑦 com as velocidades explicitadas: 

 

(1 −
𝑢2

𝑐2
)𝑑𝑦𝑑𝑢 + (1 −

𝑣2

𝑐2
)𝑑𝑥𝑑𝑣 = 0 ⟹ 

⟹
𝑑𝑣

𝑑𝑢
= −

𝑑𝑦

𝑑𝑥

(1 −
𝑢2

𝑐2
)

(1 −
𝑣2

𝑐2
)
 

 

 

 

(4.29) 

 

 Substituindo a expressão encontrada para dx/dy de uma linha características, 

obtém-se: 

𝑑𝑣

𝑑𝑢
= −

[
 
 
 −
𝑢𝑣
𝑐2
± √

𝑢2 + 𝑣2

𝑐2

(1 −
𝑢2

𝑐2
)

]
 
 
 (1 −

𝑢2

𝑐2
)

(1 −
𝑣2

𝑐2
)
 

 

(4.30) 

 

Novamente fazendo as substituições das equações (4.23) e (4.24) em (4.30), pode-

se obter: 

𝑑(‖𝑢⃗ ‖𝑠𝑒𝑛𝜃)

𝑑(‖𝑢⃗ ‖𝑐𝑜𝑠𝜃)
= [
𝑀2𝑠𝑒𝑛𝜃𝑐𝑜𝑠𝜃 ± √𝑀2 − 1

(1 −𝑀2𝑠𝑒𝑛2𝜃)
] 

(4.31) 

 

Que com alguma manipulação resulta em, tal como demonstrado em Anderson 

(2003): 
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𝑑𝜃 = ±√𝑀2 − 1
𝑑‖𝑢⃗ ‖

‖𝑢⃗ ‖
= ±√𝑀2 − 1

𝑑𝒖

𝒖
 

(4.32) 

 

Com cada um dos valores de 𝑑𝜃  indicativos de uma única linha característica, 

definidas por 𝐶+ quando 𝑑𝜃 = +√𝑀2 − 1
𝑑𝒖

𝒖
 e 𝐶− quando 𝑑𝜃 = −√𝑀2 − 1

𝑑𝒖

𝒖
. 

 A expressão (4.32) é idêntica a expressão para o escoamento de Prandtl-

Meyer observada em Zucker (1977), cuja integração resulta no valor do ângulo de 

Prandtl-Meyer. Desta forma, a expressão (4.32) pode ser reescrita como: 

 

𝑑𝜃 ± 𝑑𝜈 = 0 (4.33) 

 

Integrando indefinidamente a expressão (4.33) obtém-se: 

 

𝜃 ± 𝜈 = 𝑐𝑡𝑒 = 𝐾  

 

 Tal resultado ilustra que, dependendo da linha característica, os valores da 

soma ou subtração do ângulo do vetor velocidade em relação a um dado eixo 

definido, são constantes e iguais a uma variável K, similar aos invariantes de 

Riemann, tal como ilustrado tanto por Anderson (2003), Hodge (1995) e Shapiro 

(1953). Separando cada invariante de acordo com cada uma das linhas 

características: 

𝜃 + 𝜈 = 𝐾−  (4.34) 

𝜃 − 𝜈 = 𝐾+  (4.35) 

 

Com (4.34) ao longo da característica negativa e (4.35) da positiva. A partir destes 

resultados é possível seguir com a caracterização dos pontos internos da malha de 

um escoamento bem como uma eventual interação com as paredes. Tal discussão 

será feita na seção que se segue. 
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4.2.2.1. Pontos internos da malha 

 

 A figura 4.12 traz a representação esquemática de 3 pontos a,b e c, interno a 

malha fluida, com a e b em duas características diferentes e c o ponto de 

intersecção destas. Conforme visto, ao longo de uma mesma curva característica 

mantém-se os invariantes de Riemann de acordo com seu tipo, positiva ou negativa. 

Destes valores sabidos, é possível determinar o número de Mach no ponto c bem 

como sua posição no espaço, desde que a dos dois outros pontos já seja conhecida. 

 

Figura 4.12 – Linhas características internas a um escoamento 

 

Para a característica positiva, tem-se: 

𝐾+ = 𝑐𝑡𝑒 ⟹ 𝜃𝑎 − 𝜈𝑎 = 𝜃𝑐 − 𝜈𝑐 (4.36) 

 

E para a negativa: 

𝐾− = 𝑐𝑡𝑒 ⟹ 𝜃𝑏 + 𝜈𝑏 = 𝜃𝑐 + 𝜈𝑐 (4.37) 

  

É fácil notar que estas equações definem um sistema determinado, possibilitando a 

obtenção do ângulo de Prandtl-Meyer e daquele do vetor velocidade local em 

b 

a 
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relação ao eixo das abscissas arbitrado. Do ângulo de Prandtl-Meyer é possível 

determinar o número de Mach para o caso de um gás perfeito, conforme todo 

desenvolvimento feito por Zucker (1977) segundo a expressão: 

 

𝜈(𝑀) = √
𝑘 + 1

𝑘 − 1
arctg(√

𝑘 − 1

𝑘 + 1
(𝑀2 − 1)) − 𝑎𝑟𝑐𝑡𝑔 (√𝑀2 − 1) 

(4.38) 

 

E com ele, o ângulo de Mach conforme explicitado pela equação (4.26). Com estes 

valores e sabendo as propriedades de estagnação do escoamento, no caso do bocal 

de um míssil com escoamento suposto isentrópico (ao menos longe da parede), as 

próprias pressões e temperaturas da câmara de combustão. 

 Para finalizar tal análise, resta verificar a posição de tal ponto c sabidas as 

posições dos demais pontos da figura 4.12. Desta figura, nota-se que o ângulo de 

inclinação de cada característica é dado pela média aritmética do ângulo que estas 

fazem com o eixo das abscissas de referência, tal como ilustrado na figura 4.11. 

Desta forma, supondo os pontos tão próximos quanto se queira de forma a sua 

conexão ser feita por segmentos de retas, tem-se que o coeficiente angular das 

retas são definidos por: 

 

𝑚𝑎 = 𝑡𝑔 (
1

2
(𝜃𝑎 + 𝜃𝑐 − 𝜇𝑎 − 𝜇𝑐)) 

(4.39) 

𝑚𝑏 = 𝑡𝑔 (
1

2
(𝜃𝑏 + 𝜃𝑐 + 𝜇𝑏 + 𝜇𝑐)) 

(4.40) 

 

Assim, as equações que ligam os pontos consecutivos são dadas por: 

𝑦𝑐 = 𝑦𝑎 +𝑚𝑎(𝑥𝑐 − 𝑥𝑎) (4.41) 

𝑦𝑐 = 𝑦𝑏 +𝑚𝑏(𝑥𝑐 − 𝑥𝑏) (4.42) 

 

Subtraindo a equação (4.42) de (4.41) e isolando 𝑥𝑐, tem-se que: 
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𝑥𝑐 =
𝑦𝑏 − 𝑦𝑎 +𝑚𝑏𝑥𝑏 −𝑚𝑎𝑥𝑎

𝑚𝑏 −𝑚𝑎
 

(4.43) 

 

E o valor de 𝑦𝑐 pode ser encontrado substituindo o valor obtido em (4.43) ou em 

(4.41) e (4.42). 

 

4.2.2.2. Ponto de parede 

 

 A figura 4.13 ilustra um ponto de parede, com c numa posição tal que o 

ângulo que a parede faz com a horizontal é dado por 𝜃𝑝𝑎𝑟𝑒𝑑𝑒. 

 

 

Figura 4.13 – Ponto de parede 

 

 Neste caso fica fácil notar que a posição do ponto c é univocamente 

determinada pelo encontro das características positiva e negativa. Da característica 

negativa, tem-se: 

𝐾− = 𝜃𝑎 + 𝜈𝑎 = 𝜃𝑝𝑎𝑟𝑒𝑑𝑒 + 𝜈𝑝𝑎𝑟𝑒𝑑𝑒 ⟹ 𝜈𝑝𝑎𝑟𝑒𝑑𝑒 = 𝜃𝑎 − 𝜃𝑝𝑎𝑟𝑒𝑑𝑒 + 𝜈𝑎 (4.44) 

 

b 
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Determinado este valor, conforme já visto na seção 4.2.2.1, o número de Mach e 

ângulo de Mach podem ser facilmente determinados assim como todas as demais 

propriedades. Nota-se, também, que a partir do valor do ângulo de Prandtl-Meyer do 

ponto da parede é possível determinar o invariante de Riemann para a linha 

característica positiva: 

𝐾+ = 𝜃𝑏 − 𝜈𝑏 = 𝜃𝑝𝑎𝑟𝑒𝑑𝑒 − 𝜈𝑝𝑎𝑟𝑒𝑑𝑒 (4.45) 

 

Para finalizar tal análise, resta verificar a posição de tal ponto c sabidas as 

posições dos demais pontos da figura 4.13. Desta figura, nota-se que o ângulo de 

inclinação de cada característica é dado pela média aritmética do ângulo que estas 

fazem com o eixo das abscissas de referência, tal como ilustrado na figura 4.11. 

Desta forma, supondo os pontos tão próximos quanto se queira de forma a sua 

conexão ser feita por segmentos de retas, tem-se que o coeficiente angular das 

retas são definidos por: 

 

𝑚𝑎 = 𝑡𝑔 (
1

2
(𝜃𝑎 + 𝜃𝑝𝑎𝑟𝑒𝑑𝑒 − 𝜇𝑎 − 𝜇𝑝𝑎𝑟𝑒𝑑𝑒)) 

(4.46) 

𝑚𝑏 = 𝑡𝑔 (
1

2
(𝜃𝑏 + 𝜃𝑝𝑎𝑟𝑒𝑑𝑒 + 𝜇𝑏 + 𝜇𝑝𝑎𝑟𝑒𝑑𝑒)) 

(4.47) 

 

Assim, as equações que ligam os pontos consecutivos são dadas por: 

𝑦𝑝𝑎𝑟𝑒𝑑𝑒 = 𝑦𝑎 +𝑚𝑎(𝑥𝑝𝑎𝑟𝑒𝑑𝑒 − 𝑥𝑎) (4.48) 

𝑦𝑝𝑎𝑟𝑒𝑑𝑒 = 𝑦𝑏 +𝑚𝑏(𝑥𝑝𝑎𝑟𝑒𝑑𝑒 − 𝑥𝑏) (4.49) 

 

Subtraindo a equação (4.49) de (4.48) e isolando 𝑥𝑝𝑎𝑟𝑒𝑑𝑒, tem-se que: 

𝑥𝑝𝑎𝑟𝑒𝑑𝑒 =
𝑦𝑏 − 𝑦𝑎 +𝑚𝑏𝑥𝑏 −𝑚𝑎𝑥𝑎

𝑚𝑏 −𝑚𝑎
 

(4.50) 
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E o valor de 𝑦𝑝𝑎𝑟𝑒𝑑𝑒 pode ser encontrado substituindo o valor obtido em (4.50) ou em 

(4.46) e (4.47). 

 

4.2.3. Aplicação na determinação da geometria da parede de bocais de 

mínimo comprimento 

 

 Este tema é largamente abordado na bibliografia, sendo foco de 

particularização tanto de Anderson (2003) bem como de Hodge (1995). Shapiro 

descreve como fazer o projeto de um bocal supersônico pelo método das 

características para bocais de túneis de vento. Mais recentemente alguns trabalhos 

fazem uso da técnica das características para projetos de bocais de mínimo 

comprimento, tais como os de Khan (2013) que, assim como Ali (2002) meramente 

propões um método numérico para o projeto de bocais planos; ou ainda o trabalho 

de Zebbiche (2006) que visa o projeto de tais bocais de mínimo comprimento para 

elevadas temperaturas do escoamento, determinando cada um dos ângulos 

característico e demais variáveis como função da temperatura. Por fim, vale citar o 

trabalho de Olson (2012) acerca da simulação em bocais sobre expandidos de 

vórtices de grande magnitude. 

 Aqui serão somente apresentados os conceitos fundamentais que permitem 

garantir um bocal tão curto quanto possível. Esta característica é de sobremodo 

desejada neste tipo de máquina uma vez que o peso próprio é um fator limitante 

quanto a missão a ele destinada, bem como maiores requisitos de empuxo para 

elevá-lo até a condição ideal de retorno. A figura 4.14 extraída de Anderson (2003) 

traz um esquema de um bocal convergente-divergente qualquer. 
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Figura 4.14 – Representação de um bocal convergente-divergente e suas linhas de Mach (Anderson, 

2003) 

 

 Há duas regiões típicas na porção divergente deste ente. A primeira é a 

região de expansão, na qual a aceleração do fluído. Esta região caracteriza-se pela 

parede ter concavidade voltada para a porção externa a fim de garantir uma 

expansão eficiente, tal como ilustrado por Hodge (1995). A segunda seção visa 

eliminar as reflexões das linhas de Mach, sendo esta inicialmente com curvatura 

para a região interna até se obter paralelismo entre as paredes. Esta situação não é 

buscada num bocal de foguete ou de míssil. A figura 4.15, também oriunda de 

Anderson (2003) traz a situação desejada. 

 

Figura 4.15 – Bocal divergente curto (Anderson, 2003) 



64 

 

 

 No caso da figura 4.15 nota-se que não há a região de expansão 

propriamente dita, sendo esta ocorrendo no espaço mais curto possível. Isto implica, 

para um dado número de Mach na saída um ângulo de inclinação máximo inicial 

para parede, na junção com a garganta definida pela porção convergente do 

elemento propulsor. A meta que se segue é determinar tal ângulo somente em 

função do número de Mach na saída. Para tanto, consideram-se os pontos a,c e b 

todos, por hipótese localizados na mesma linha de Mach. Também se assume que a 

linha de centro do bocal serve como uma parede com inclinação nula em relação a 

horizontal definida (𝜃𝑝𝑎𝑟𝑒𝑑𝑒 = 0). 

 Da característica que liga os pontos b e c, com b um ponto da seção de 

descarga do bocal, com o número de Mach desejado na saída. 

𝐾+ = 𝜃𝑏 − 𝜈𝑏(𝑀𝑠𝑎í𝑑𝑎) = 𝜃𝑐 − 𝜈𝑐 ⟹ 𝜈𝑐 = 𝜈𝑏(𝑀𝑠𝑎í𝑑𝑎) − 𝜃𝑏 (4.51) 

 

No limite final da parede externa, supõe-se que seu ângulo local com relação 

a horizontal é nulo, implicando na relação (4.52): 

𝜈𝑐 = 𝜈𝑏(𝑀𝑠𝑎í𝑑𝑎) (4.52) 

 

 Tomando procedimento similar em relação a característica negativa que 

conecta o ponto a (de ângulo máximo) e c (parede), tem-se: 

𝐾− = 𝜃𝑎 + 𝜈𝑎 = 𝜈𝑐 ⟹ 𝜃𝑚𝑎𝑥 + 𝜈𝑎 = 𝜈𝑏(𝑀𝑠𝑎í𝑑𝑎) (4.53) 

 

Sendo o ponto a na garganta, tem-se que o número de Mach em à é o unitário. 

Assim, segundo Anderson (2003), 𝜈𝑎 = 𝜃𝑚𝑎𝑥, assim: 

𝜃𝑚𝑎𝑥 =
1

2
𝜈(𝑀𝑠𝑎í𝑑𝑎) 

(4.54) 
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Que permite facilmente determinar o ângulo máximo de projeto para o bocal. Tal 

informação será de grande valia no desenvolvimento do roteiro de simulação 

computacional. 

 

4.3. PROJETO DE BOCAL CONVERGENTE PELO MÉTODO DA 

TRANSFORMAÇÃO HODOGRÁFICA 

 

 Esta parte do projeto se resume a avaliação da melhor geometria para o 

projeto da porção convergente do bocal convergente-divergente para o míssil 

proposto. Para tanto, valer-se-á da aplicação da transformação hodográfica a fim de 

prover maior facilidade na solução do problema. Tal método, descrito por Shapiro 

(1953) consiste na transformação do sistema de coordenadas de estudo, no caso 

coordenadas de posição, para um sistema nos quais as coordenadas são definidas 

segundo velocidades, isto é, a posição do corpo passa a ser função do campo de 

velocidades tal como: 

𝒙 = 𝑓(𝒖) (4.55) 

 

 Naturalmente a transposição das coordenadas físicas para coordenadas 

dependentes da velocidade, gera uma distorção do problema no plano hodográfico o 

que, segundo Shapiro (1953) acarreta em dificuldades na resolução analítica para 

casos mais complexos.  

O que se pretende ao utilizar a transformação hodográfica é seguir a 

metodologia discutida em Cook (1999) e posteriormente em Kryeziu (2013) para a 

determinação da geometria de um bocal convergente com condições de estagnação 

as mesmas que aquelas de um tanque ou câmara de combustão. O trabalho de 

Kryeziu (2013) é muito mais uma revisão daquele de Cook (1999), expandindo a 

análise também para escoamentos supersônicos. Aqui será apresentada toda a 

construção matemática que define o problema do bocal subsônico, para 

posteriormente, na seção de metodologia, aplicar o método das diferenças finitas 

(MDF) em sua solução. Vale ressaltar que Courant (1962) em meio as suas 
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discussões acerca de equações diferenciais parciais alude a este problema quando 

trata de equações elípticas, caso este a ser tratado aqui conforme será visto 

posteriormente. 

 A princípio, considerou-se o escoamento em questão como irrotacional, 

adiabático, em regime permanentes, ou seja, um escoamento potencial, tal como 

feito na seção 4.2 quando discutido o método das características. Tal hipótese 

justifica-se novamente pela divisão dos fenômenos dentro do escoamento do bocal 

nas imediações da parede e ao longe, este último suposto potencial. Também 

ressalta-se que o método hodográfico tem seu desenvolvimento todo baseado 

nestas hipóteses, conforme apresentado em Shapiro (1953). 

O sistema de equações iniciais úteis para a solução do problema estão na 

definição da irrotacionalidade, continuidade e de Bernoulli para o escoamento plano 

considerado. Neste caso, diferentemente daquele apresentado no capítulo 4.2, tem-

se como coordenada em y o próprio raio do bocal, variável ao longo do 

comprimento. A condição de irrotacionalidade para o caso plano: 

∇𝑥𝑢⃗ = 0 ⟹
𝜕𝑢

𝜕𝑟
+
𝜕𝑣

𝜕𝑥
= 0 

(4.56) 

  

A equação da continuidade é pouco diferente daquela determinada pela equação 

(4.11) pela existência de um termo característico da axissimetricidade do problema 

em questão dado pela transformação em coordenadas cilíndricas, tal como 

apresentado por Cook (1999) e Coubert (1962): 

(𝑐2 − 𝑢2)𝑢𝑥 − 𝑢𝑣(𝑢𝑟 + 𝑣𝑥) + (𝑐
2 − 𝑣2)𝑣𝑟 + χ

c2

𝑟
𝑣 = 0 

(4.57) 

 

E a equação de Bernoulli: 

𝑢2 + 𝑣2

2
+

𝑐2

𝑘 − 1
=

𝑘 + 1

2(𝑘 − 1)
𝑐∗2 

(4.58) 
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Com 𝑐∗
2
 a velocidade sônica quando Mach = 1 e c a velocidade sônica local. A figura 

4.16 apresenta uma representação física para o problema. 

 

Figura 4.16 – Representação física do escoamento (Cook, 1999) 

 

 Da análise da figura 4.16 podem-se lançar as condições de contorno para o 

problema. A primeira é relacionada a inexistência de componentes radiais de 

velocidade na linha de corrente central, ou seja, a hipótese de que no centro do 

bocal o escoamento é unidimensional: 

𝑣 = 0 𝑝𝑎𝑟𝑎 𝑟 = 0 

A segunda condição de contorno se relaciona a hipótese de aderência a parede do 

bocal. Por esta o vetor velocidade é tangente a parede dada a existência de uma 

linha de corrente também tangente a esta. Assim: 

𝑡𝑔(−𝛿) =
𝑣

𝑢
 𝑛𝑎 𝑙𝑖𝑛ℎ𝑎 𝑂𝐵 

A terceira, diz respeito a velocidade do escoamento ao longe da seção de descarga 

do bocal, no caso, a velocidade sônica. Para o projeto em questão, calcular-se há 

para diferentes inclinações do bocal a posição em que se tem o escoamento sônico 

9ou ao menos aproximadamente sônico) bem como a determinação das linhas de 

corrente característica no plano físico, permitindo assim estender toda a superfície 

do bocal de tal maneira que se obtenha o escoamento sônico na garganta. A 

condição: 
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‖𝒖‖ = √𝑢2 + 𝑣2 → 0 𝑞𝑢𝑎𝑛𝑑𝑜 𝑥 → ∞ 

Por fim destaca-se a condição de contorno acerca do escoamento em uma linha de 

corrente qualquer. Nesta o escoamento é suposto homentrópico, isto é, com 

entropia constante ao longo de uma linha de corrente (Cook, 1999) e a velocidade é 

constante: 

‖𝒖‖ = √𝑢2 + 𝑣2 = 𝑢0 𝑒
𝑑𝑟

𝑑𝑥
=
𝑣

𝑢
 

 Com a alteração das coordenadas para o plano hodográfico, a indefinição da 

posição da linha de corrente deixa de existir, facilitando a análise. A condição de 

irrotacionalidade se torna: 

𝜕𝑥

𝜕𝑣
+
𝜕𝑟

𝜕𝑢
= 0 

(4.59) 

  

E a equação da continuidade: 

(𝑐2 − 𝑢2)𝑟𝑣 − 𝑢𝑣(𝑥𝑣 + 𝑟𝑢) + (𝑐
2 − 𝑣2)𝑥𝑢 + χ

c2

𝑟
𝑣(𝑥𝑢𝑟𝑣 − 𝑥𝑣𝑟𝑢) = 0 

(4.60) 

 

 

Figura 4.17 – Representação do problema no plano hodográfico (Cook, 1999) 
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Antes de continuar com as condições de contorno em plano de análise modificado 

tal como na figura 4.17, Cook (1999) apresenta os potenciais de Legendre como 

alternativa ao plano hedográfico. Tal potencial é definido de maneira bastante 

parecida em relação ao potencial de velocidades, entretanto a derivada deste em 

relação as componentes do vetor velocidade fornece a posição no plano físico. Por 

conseguinte, sua definição é dada por: 

𝑥 =
𝜕Φ

𝜕𝑢
 

(4.61) 

𝑟 =
𝜕Φ

𝜕𝑣
 

(4.62) 

 

Sendo este concatenado ao potencial de velocidades por: 

Φ(𝑢, 𝑣) = 𝑥𝑢 + 𝑟𝑣 − 𝜙(𝑥, 𝑟) (4.63) 

 

Aplicando as transformações na equação (4.60), tem-se em termos de potenciais de 

Legendre a equação da continuidade: 

(𝑎2 − 𝑢2)Φ𝑣𝑣 + 2𝑢𝑣Φ𝑢𝑣 + (𝑐
2 − 𝑣2)Φ𝑢𝑢 + 𝜒

𝑐2𝑣

Φ𝑣
(Φ𝑢𝑢Φ𝑣𝑣 −Φ𝑢𝑣

2 ) = 0 
(4.64) 

 

Com 𝜒 igual a 0 quando o escoamento é plano e igual a um quando o escoamento é 

axissimétrico. Esta equação pode ser dividida em duas parcelas distintas: 

 

𝐿[Φ] = (𝑎2 − 𝑢2)Φ𝑣𝑣 + 2𝑢𝑣Φ𝑢𝑣 + (𝑐
2 − 𝑣2)Φ𝑢𝑢 (4.65) 

𝑁[Φ] =
𝑐2𝑣

Φ𝑣
(Φ𝑢𝑢Φ𝑣𝑣 −Φ𝑢𝑣

2 ) 
(4.66) 

 

A primeira parcela também é discutida em Courant (1962). Esta se trata de uma 

equação diferencial parcial de Monge-Ámpere. Cook (1999) ainda ressalta que que 

seu tipo depende do número de Mach do escoamento: se M > 1 o problema é 

elíptico, caso contrário, se M < 1, o problema é hiperbólico. Desenvolvendo a 
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expressão (4.65) de forma a eliminar qualquer componente de velocidade, a partir 

da substituição ‖𝒖‖ = √𝑢2 + 𝑣2 e 𝑡𝑔𝜃 = 𝑣/𝑢: 

 

𝐿[Φ] = ‖𝑢‖2Φ‖𝒖‖‖𝒖‖ +
(𝑘 + 1)(𝑐∗

2
− ‖𝒖‖2)

(𝑘 + 1)𝑐∗
2
− (𝑘 − 1)‖𝒖‖2

(‖𝒖‖Φ‖𝒖‖ +Φ𝜃𝜃) 
(4.64) 

 

 Desenvolvidas as expressões em termos dos potenciais de Legendre, resta 

apresentar as condições de contorno segundo as transformações realizadas. A 

condição de contorno relacionada a aderência da linha de corrente a parede se torna 

uma condição de Neumann dada por: 

𝜕Φ

𝜕𝜃
|
𝜃=0 𝑒 𝜃=−𝛿

= 0 

A condição de velocidade constante ao longo de uma linha de corrente genérica BC 

também é uma condição de Neumann: 

𝜕2Φ

𝜕𝜃2
+ ‖𝒖‖0

𝜕Φ

𝜕‖𝒖‖
|
‖𝒖‖=‖𝒖‖0

= 0 

A condição de contorno relacionada as condições de estagnação se trata de uma 

condição de Dirichlet: 

Φ|‖𝒖‖=0 = 0 

Finalmente, a última condição, também de Neumann, passa a ser a altura da seção 

na qual o escoamento é sônico, isto é: 

𝜕Φ

𝜕𝜃
|
𝜃=0 𝑒 ‖𝒖‖=‖𝒖‖0

= 0 

 A figura 4.17 ilustra o problema no plano 𝜃𝑥‖𝒖‖, sendo tal extraída de Cook 

(1999). 
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Figura 4.18 -  Problema apresentado no plano 𝜃𝑥‖𝒖‖ 

 

 

4.4. ESCOAMENTO QUASE-UNIDIMENSIONAL EM BOCAIS 

CONVERGENTE-DIVERGENTE 

 

 A figura 4.19 ilustra a situação em análise. Ela apresenta uma seção de um 

bocal convergente-divergente com variação infinitesimal das propriedades entre a 

seção 1 e 2 distantes 𝑑𝑥 uma da outra. O escopo desta análise é determinar as 

variações infinitesimais para estas propriedades ao longo do tempo e da direção 𝑥, 

paralela ao eixo do elemento, e com estas, modelar o fenômeno do escoamento 

compressível a partir de equações diferenciais parciais adequadas. 
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Figura 4.19 – Bocal quase-unidimensional convergente-divergente 

 

 Para a determinação da equação da conservação da massa, inicia-se 

avaliando a equação da continuidade em sua forma integral, tal como apresentada 

em Anderson (1995) 

𝜕

𝜕𝑡
∭ ρ𝑑𝑉 +∬ ρ(𝑉⃗ ∙ 𝑛⃗ )𝑑𝑆

𝑆.𝐶.𝑉.𝐶.

= 0 
(4.65) 

 

 O segundo termo da equação (4.65) equivale a verificar os fluxos de massa 

através das superfícies de controle. De fato, ela representa a variação temporal da 

massa através das superfícies do volume de controle unidimensional adotado na 

figura 4.19. Na seção a montante tem-se que o vetor velocidade faz um ângulo de 

180º com a normal da superfície, desta forma o valor do produto apresentado será 

negativo. O contrário ocorre na superfície de saída, isto é, o vetor velocidade do 

escoamento nesta seção está na mesma direção e sentido da normal 

(convencionada positiva apontando para fora da superfície de controle), acarretando 

em valor positivo do produto escalar. Naturalmente não há vazão mássica nas 
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superfícies laterais dado que não há componentes, por hipótese de escoamento 

quase-unidimensional, de velocidades não-perpendiculares as normais destas 

superfícies. 

 O primeiro termo da equação (4.65) traz uma integral tripla no volume de 

controle, implicando que este termo avalia a taxa de variação temporal da massa 

total no interior do volume de controle. Este é o termo que indica se há ou não 

acumulo de massa ao longo do tempo no interior do volume de controle, sendo 

assumido nulo no caso da análise em regime estacionário, no qual não há interesse 

no caráter transitório de, por exemplo, uma câmara de gás esvaziando. Do exposto, 

pode-se dizer que a equação (4.65), em termos dos parâmetros da figura 4.19 ode 

ser reescrita como: 

𝜕(𝜌𝐴𝑑𝑥)

𝜕𝑡
+ {[(𝜌 + 𝑑𝜌)(𝐴 + 𝑑𝐴)(𝑉 + 𝑑𝑉)]⏟                  

𝐷𝑒𝑠𝑐𝑎𝑟𝑔𝑎

− 𝜌𝐴𝑉⏟
𝐸𝑛𝑡𝑟𝑎𝑑𝑎

} = 0 ⟹ 

Fazendo a distributiva e desprezando os termos de 2ª ordem: 

⟹
𝜕(𝜌𝐴𝑑𝑥)

𝜕𝑡
+ 𝜌𝐴𝑑𝑉 + 𝜌𝑉𝑑𝐴 + 𝑉𝐴𝑑𝜌 = 0 ⟹ 

⟹
𝜕(𝜌𝐴𝑑𝑥)

𝜕𝑡
+ 𝑑(𝜌𝐴𝑉) = 0 ⟹

𝜕(𝜌𝐴)

𝜕𝑡
+
𝜕(𝜌𝐴𝑉)

𝜕𝑥
= 0  

 

 

 

 

 

(4.66) 

 

Que é a equação da continuidade para o caso de um escoamento quase-

unidimensional.  

 A equação da conservação da quantidade de movimento também pode ser 

obtida de maneira semelhante à da continuidade. Em sua forma integral, para o caso 

de um fluído não-viscoso, tem-se: 

𝜕

𝜕𝑡
∭ 𝜌𝑢𝑑𝑉 +∬ 𝜌𝑢(𝑉⃗ ∙ 𝑛⃗ )𝑑𝑆

𝑆.𝐶.𝑉.𝐶.

= −∬ 𝑝𝑑𝑆𝑥
𝑆.𝐶.

 
(4.67) 

 

 O primeiro termo da equação (4.67) diz respeito a quantidade de movimento 

associada ao deslocamento da massa fluída contida no volume de controle na 

direção x, desta forma, quando integrada ao longo do elemento infinitesimal é 

idêntica a (𝜌𝑉𝐴𝑑𝑥) . A segunda integral da expressão, esta avaliando a taxa de 
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variação do momentum nas superfícies de controle do volume fluído. Novamente 

não há componentes avaliáveis nas fronteiras laterais do volume de controle dada a 

perpendicularidade entre estas normais e a componente de velocidade do 

escoamento, restando, novamente, somente a avaliação em cada uma das 

superfícies de controle perpendiculares ao eixo de simetria axial do bocal. Seu valor, 

em termos das propriedades expressas na figura 4.19 e desprezando termos de 2ª 

ordem ou superiores: 

∬ 𝜌𝑢(𝑉⃗ ∙ 𝑛⃗ )𝑑𝑆
𝑆.𝐶.

= [(𝜌 + 𝑑𝜌)(𝐴 + 𝑑𝐴)(𝑉 + 𝑑𝑉)2] − 𝜌𝐴𝑉2 ⟹ 

⟹∬ 𝜌𝑢(𝑉⃗ ∙ 𝑛⃗ )𝑑𝑆
𝑆.𝐶.

= 𝐴𝑉2𝑑𝜌 + 𝜌𝑉2𝑑𝐴 + 2𝜌𝐴𝑉𝑑𝑉 = 𝑑(𝜌𝐴𝑉2) 

 

 

(4.68) 

  

O termo de pressão após a igualdade é de mais difícil avaliação. Anderson 

(1995) apresenta uma figura com as forças relacionadas ao campo de pressões 

aplicadas a cada face do volume de controle da figura 4.19. Estas resultantes estão 

reproduzidas na figura 4.20. 

 

Figura 4.20 – Distribuição das forças relacionadas as pressões atuantes no elemento fluído 
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 Da avaliação da figura 4.20, conclui-se que a integral das forças de pressão 

sobre as superfícies de controle orientadas segundo o eixo 𝑥, o de simetrial axial é 

dada pela expressão (4.69). 

∬ 𝑝𝑑𝑆𝑥
𝑆.𝐶.

= [(𝑝 + 𝑑𝑝)(𝐴 + 𝑑𝐴)] − [𝑝𝐴 + 𝑝𝑑𝐴] ⟹ 

⟹∬ 𝑝𝑑𝑆𝑥
𝑆.𝐶.

= 𝐴𝑑𝑝 

 

 

(4.69) 

 

Substituindo (4.68) e (4.69) em (4.67): 

𝜕(𝜌𝑉𝐴𝑑𝑥)

𝜕𝑡
+ 𝑑(𝜌𝐴𝑉2) = −𝐴𝑑𝑝 ⟹ 

⟹
𝜕(𝜌𝐴𝑉)

𝜕𝑡
+
𝜕(𝜌𝐴𝑉2)

𝜕𝑥
+ 𝐴

𝜕𝑝

𝜕𝑥
 

 

 

(4.70) 

 

Multiplicando a equação (4.66) por 𝑉 e subtraindo da equação (4.70): 

𝜕(𝜌𝐴𝑉)

𝜕𝑡
+
𝜕(𝜌𝐴𝑉2)

𝜕𝑥
+ 𝐴

𝜕𝑝

𝜕𝑥
− 𝑉

𝜕(𝜌𝐴)

𝜕𝑡
− 𝑉

𝜕(𝜌𝐴𝑉)

𝜕𝑥
= 0 ⟹ 

⟹ (𝜌𝐴
𝜕𝑉

𝜕𝑡
+ 𝜌𝑉

𝜕𝐴

𝜕𝑡
+ 𝐴𝑉

𝜕𝜌

𝜕𝑡
) + (2𝑉𝜌𝐴

𝜕𝑉

𝜕𝑥
+ 𝜌𝑉2

𝜕𝐴

𝜕𝑥
+ 𝐴𝑉2

𝜕𝜌

𝜕𝑥
) + 𝐴

𝜕𝑝

𝜕𝑥

− (𝜌𝑉
𝜕𝐴

𝜕𝑡
+ 𝐴𝑉

𝜕𝜌

𝜕𝑡
) − (𝜌𝑉2

𝜕𝐴

𝜕𝑥
+ 𝐴𝑉2

𝜕𝜌

𝜕𝑥
+ 𝜌𝐴𝑉

𝜕𝑉

𝜕𝑥
) = 0 ⟹ 

⟹ 𝜌𝐴
𝜕𝑉

𝜕𝑡
+ 𝜌𝐴𝑉

𝜕𝑉

𝜕𝑥
+  𝐴

𝜕𝑝

𝜕𝑥
= 0 ⟹ 

⟹ 𝜌
𝜕𝑉

𝜕𝑡
+ 𝜌𝑉

𝜕𝑉

𝜕𝑥
+ 
𝜕𝑝

𝜕𝑥
= 0  

(4.71) 

 

Que é a equação da quantidade de movimento para o escoamento quase-

unidimensional. 

Por fim,  equação da energia pode ser obtida da mesma maneira. Antes, 

ressalta-se que, para o caso analisado, as seguintes hipóteses são válidas: 

escoamento adiabático, sem realização de trabalho através de forças viscosas, mas 
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tão somente pela ação do capo de pressões. Desta forma, a equação da energia na 

forma integral (Anderson,1995): 

𝜕

𝜕𝑡
∭ 𝜌(𝑒 +

𝑉2

2
)𝑑𝑉 +∬ 𝜌(𝑒 +

𝑉2

2
) (𝑉⃗ ∙ 𝑛⃗ )𝑑𝑆

𝑆.𝐶.𝑉.𝐶.

= −∬ 𝑝(𝑉⃗ ∙ 𝑛⃗ )𝑑𝑆
𝑆.𝐶.

 
(4.72) 

  

O mesmo procedimento dos casos anteriores será aplicado. A integral tripla 

descreve a variação da energia total no interior do volume de controle, sendo dada 

por: 

∭ 𝜌(𝑒 +
𝑉2

2
)𝑑𝑉

𝑉.𝐶.

= 𝜌 (𝑒 +
𝑉2

2
)𝐴𝑑𝑥 

(4.73) 

 

Já a segunda integral do lado esquerdo da igualdade (4.72) diz respeito ao fluxo de 

energia que entra e sai do volume de controle através das superfícies de controle 

nas quais a direção da velocidade do escoamento não é perpendicular a normal. A 

equação (4.74) demonstra o equivalente da integral de área. 

 

∬ 𝜌(𝑒 +
𝑉2

2
) (𝑉⃗ ∙ 𝑛⃗ )𝑑𝑆

𝑆.𝐶.

= {(𝜌 + 𝑑𝜌) [(𝑒 + 𝑑𝑒) +
(𝑉 + 𝑑𝑉)2

2
] (𝑉 + 𝑑𝑉)(𝐴 + 𝑑𝐴)} − 𝜌 (𝑒 +

𝑉2

2
)𝐴𝑉 ⟹ 

⟹∬ 𝜌(𝑒 +
𝑉2

2
) (𝑉⃗ ∙ 𝑛⃗ )𝑑𝑆

𝑆.𝐶.

= (𝜌𝑒𝐴𝑑𝑉 + 𝜌𝑒𝑉𝑑𝐴 + 𝜌𝐴𝑉𝑑𝑒 + 𝑒𝐴𝑉𝑑𝜌)⏟                    
=𝑑(𝜌𝑒𝐴𝑉)

+
1

2
(3𝜌𝐴𝑉2𝑑𝑉 + 𝜌𝑉3𝑑𝐴 + 𝐴𝑉3𝑑𝜌)⏟                

=𝑑(𝜌𝐴𝑉3)

⟹ 

⟹∬ 𝜌(𝑒 +
𝑉2

2
) (𝑉⃗ ∙ 𝑛⃗ )𝑑𝑆

𝑆.𝐶.

= 𝑑(𝜌𝑒𝐴𝑉) +
1

2
𝑑(𝜌𝐴𝑉3) 

(4.74) 

 

 O termo de pressões pode ser definido segundo as pressões da figura 4.20. 

 

∬ 𝑝(𝑉⃗ ∙ 𝑛⃗ )𝑑𝑆
𝑆.𝐶.

= [(𝑝 + 𝑑𝑝)(𝐴 + 𝑑𝐴)(𝑉 + 𝑑𝑉)] − [𝑝𝐴𝑉 + 𝑝𝑉𝑑𝐴] ⟹ 
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⟹∬ 𝑝(𝑉⃗ ∙ 𝑛⃗ )𝑑𝑆
𝑆.𝐶.

= 𝑝𝐴𝑑𝑉 + 𝑝𝑉𝑑𝐴 + 𝑉𝐴𝑑𝑝 = 𝑑(𝑝𝐴𝑉) 
(4.75) 

 

Substituindo (4.73) a (4.75) em (4.72): 

 

𝜕

𝜕𝑡
[𝜌 (𝑒 +

𝑉2

2
)𝐴] +

𝜕(𝜌𝑒𝐴𝑉)

𝜕𝑥
+
1

2

𝜕(𝜌𝐴𝑉3)

𝜕𝑥
+
𝜕(𝑝𝐴𝑉)

𝜕𝑥
= 0  

(4.76) 

 

Que é a equação da energia na forma conservativa. Com mesmo artifício utilizado 

para obtenção da equação da quantidade de movimento será determinada a 

equação da energia em sua forma não conservativa. Multiplicando a equação da 

continuidade pela energia interna e subtraindo da equação (4.76): 

 

𝜕

𝜕𝑡
[𝜌 (𝑒 +

𝑉2

2
)𝐴] +

𝜕(𝜌𝑒𝐴𝑉)

𝜕𝑥
+
1

2

𝜕(𝜌𝐴𝑉3)

𝜕𝑥
+
𝜕(𝑝𝐴𝑉)

𝜕𝑥
− 𝑒

𝜕(𝜌𝐴)

𝜕𝑡
− 𝑒

𝜕(𝜌𝐴𝑉)

𝜕𝑥
= 0 ⟹ 

⟹ 𝜌𝐴
𝜕𝑒

𝜕𝑡
+ 𝜌𝐴𝑉

𝜕𝑒

𝜕𝑥
= −𝑝

𝜕(𝐴𝑉)

𝜕𝑥
⟹  𝜌𝐴

𝜕𝑒

𝜕𝑡
+ 𝜌𝐴𝑉

𝜕𝑒

𝜕𝑥
= −𝑝𝑉

𝜕𝐴

𝜕𝑥
− 𝑝𝐴

𝜕𝑉

𝜕𝑥
⟹ 

⟹ 𝜌
𝜕𝑒

𝜕𝑡
+ 𝜌𝑉

𝜕𝑒

𝜕𝑥
= −

𝑝𝑉

𝐴

𝜕𝐴

𝜕𝑥
− 𝑝

𝜕𝑉

𝜕𝑥
⟹ 

⟹ 𝜌
𝜕𝑒

𝜕𝑡
+ 𝜌𝑉

𝜕𝑒

𝜕𝑥
= −𝑝𝑉

𝜕ln (𝐴)

𝜕𝑥
− 𝑝

𝜕𝑉

𝜕𝑥
 

(4.77) 

 

Para um gás perfeito, a energia interna é dada por: 

𝑒 = 𝑐𝑣𝑇 

Desta forma, equação da energia pode ser reescrita em termos do calor específico a 

volume constante, resultando em: 
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⟹ 𝜌𝑐𝑣
𝜕𝑇

𝜕𝑡
+ 𝜌𝑐𝑣𝑉

𝜕𝑇

𝜕𝑥
= −𝑝𝑉

𝜕ln (𝐴)

𝜕𝑥
− 𝑝

𝜕𝑉

𝜕𝑥
 

(4.78) 

 

Ou ainda em termos da razão de calores específicos, sabendo que: 

𝑘 =
𝑐𝑝

𝑐𝑣
=
𝑐𝑣 + 𝑅

𝑐𝑣
⟹ 𝑐𝑣 =

𝑅

𝑘 − 1
 

Com 𝑅 a constante dos gases ideais para o fluido de trabalho. Substituindo esta 

expressão em (4.78): 

 

⟹
𝜌𝑅

𝑘 − 1

𝜕𝑇

𝜕𝑡
+
𝜌𝑅𝑉

𝑘 − 1

𝜕𝑇

𝜕𝑥
= −𝑝𝑉

𝜕ln (𝐴)

𝜕𝑥
− 𝑝

𝜕𝑉

𝜕𝑥
 

(4.79) 

 

4.5. ESCOAMENTOS TURBULENTOS 

 

 Com o escopo de simular o escoamento viscoso através do bocal 

convergente-divergente proposto ao míssil, será empregada simulação 

computacional através do método dos volumes finitos através da utilização de um 

software comercial. Para tanto faz-se necessário apresentar os fundamentos deste 

método de maneira bastante resumida a fim de fornecer os princípios necessários 

para a solução dos casos propostos. 

 

4.5.1. Conceitos fundamentais 

 

 Conforme exposto em Maliska (2013) e Malalasekera (1995), as equações 

diferenciais que regem os fenômenos de transporte do escoamento podem ser 

representados genericamente por uma equação que além do termo transiente traz 

consigo os termos relacionados ao transporte convectivo, difusivo além do termo 
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fonte. Se escrita em termos de 𝜙, qualquer propriedade por unidade de massa, tem-

se que: 

𝜕(𝜌𝜙)

𝜕𝑡
+ ∇ ∙ (𝜌𝑢⃗ 𝜙) = ∇ ∙ (Γ𝜙∇𝜙) + 𝑆𝜙 

(4.80) 

 

Para o caso de 𝜙 = 1, 𝑠𝜙 = 0 e Γ𝜙 = 0, tem-se a equação da continuidade: 

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝑢⃗ ) = 0 

(4.81) 

 

Já se 𝜙 = 𝑇, Γ𝑇 = 𝑘/𝑐𝑝, 𝑆𝑇 =
1

𝑐𝑝

𝐷𝑃

𝐷𝑡
+

𝜇

𝑐𝑝
Φ - com Φ o termo de dissipação viscosa, 𝑘 o 

coeficiente de condutividade térmica, 𝑐𝑝  o calor específico e 𝜇  a viscosidade do 

fluído – tem-se a equação da energia (ou 1ª Lei da Termodinâmica): 

𝜕(𝜌𝑇)

𝜕𝑡
+ ∇ ∙ (𝜌𝑢⃗ 𝑇) = ∇ ∙ (

𝑘

𝑐𝑝
∇𝑇) +

1

𝑐𝑝

𝐷𝑃

𝐷𝑡
+
𝜇

𝑐𝑝
Φ 

(4.82) 

 

Com 𝜙 = 𝑢𝑖 e Γ𝑢𝑖 = 𝜇, tem-se cada um dos componentes da equação da quantidade 

de movimento, com i = 1, 2 e 3 respectivamente correspondendo as direções x, y e z 

num sistema de coordenadas cartesiano, tipicamente utilizado com malhas 

estruturadas. 

𝜕(𝜌𝑢)

𝜕𝑡
+ ∇ ∙ (𝜌𝑢⃗ 𝑢) = ∇ ∙ (𝜇∇𝑢) −

𝜕𝑃

𝜕𝑥
+
𝜕

𝜕𝑥
(𝜇
𝜕𝑢

𝜕𝑥
−
2

3
𝜇∇ ∙ 𝑢⃗ ) +

𝜕

𝜕𝑦
(𝜇
𝜕𝑣

𝜕𝑥
) +

𝜕

𝜕𝑧
(𝜇
𝜕𝑤

𝜕𝑥
) (4.83) 

𝜕(𝜌𝑣)

𝜕𝑡
+ ∇ ∙ (𝜌𝑢⃗ 𝑣) = ∇ ∙ (𝜇∇𝑣) −

𝜕𝑃

𝜕𝑦
+
𝜕

𝜕𝑦
(𝜇
𝜕𝑣

𝜕𝑦
−
2

3
𝜇∇ ∙ 𝑢⃗ ) +

𝜕

𝜕𝑥
(𝜇
𝜕𝑢

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝜇
𝜕𝑤

𝜕𝑦
) (4.84) 

𝜕(𝜌𝑤)

𝜕𝑡
+ ∇ ∙ (𝜌𝑢⃗ 𝑤) = ∇ ∙ (𝜇∇𝑤) −

𝜕𝑃

𝜕𝑧
+
𝜕

𝜕𝑧
(𝜇
𝜕𝑤

𝜕𝑧
−
2

3
𝜇∇ ∙ 𝑢⃗ ) +

𝜕

𝜕𝑥
(𝜇
𝜕𝑢

𝜕𝑧
) +

𝜕

𝜕𝑦
(𝜇
𝜕𝑣

𝜕𝑧
) (4.85) 

 

O conjunto de equações de (4.80) a (4.85) somadas a equação de estado para 

gases ideais ou reais, são suficientes para a solução de escoamentos a baixas 

velocidades em regime laminar. Entretanto, quando se trata de escoamentos através 

de bocais convergente-divergentes há uma grande variação da velocidade ao longo 

do percurso desde a câmara de combustão até a seção de descarga do bocal. Desta 
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forma não se tem escoamento puramente laminar já que o número de Reynolds 

cresce de maneira muito rápida, garantindo que há escoamento turbulento ao longo 

do escoamento, fazendo-se necessário lidar com este fenômeno ao resolver o 

escoamento. 

 De maneira bem simplista, a turbulência é um fenômeno caracterizado por 

oscilações caóticas e aleatórias das propriedades do escoamento ao longo do 

tempo. Este tipo de escoamento é regido pelas forças inerciais do fluído e 

caracterizado pela presença de vórtices de diferentes dimensões que transferem 

partículas fluídas de uma região para outra, acarretando em bruscas mudanças de 

momento e garantindo misturas mais eficientes (daí a necessidade desta em 

motores a combustão que utilizam ciclo Diesel). O tratamento matemático para tal 

consiste na formulação de que uma propriedade pode ser representada por um valor 

médio adicionado de uma variação, dado por: 

 

𝜙 = 𝜙̅ + 𝜙′ 

 

Substituindo esta expressão nas equações (4.80) a (4.85) e tomando seu valor 

médio é obtido um sistema de equações que leva em conta as flutuações 

caraterísticas de escoamentos turbulentos a partir de termos denominados tensões 

de Reynolds. Este conjunto de equações é dado pelas equações (4.86) a (4.90), 

conforme listadas em Malalasekera (1995), para o caso de escoamento 

compressível. 

𝜕𝜌̅

𝜕𝑡
+ ∇ ∙ (𝜌𝑢⃗ ̅̅̅̅ ) = 0 

(4.86) 

𝜕(𝜌𝑢̅̅̅̅ )

𝜕𝑡
+ ∇ ∙ (𝜌𝑢⃗ 𝑢̅̅ ̅̅ ̅) = ∇ ∙ (𝜇∇u̅) −

𝜕𝑃̅

𝜕𝑥
+ [−

𝜕(𝜌̅𝑢′2̅̅ ̅̅ ̅̅ )

𝜕𝑥
−
𝜕(𝜌̅𝑢′𝑣′̅̅ ̅̅ ̅̅ ̅)

𝜕𝑦
−
𝜕(𝜌̅𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅)

𝜕𝑧
] + 𝑆𝑢 

(4.87) 

𝜕(𝜌𝑣̅̅̅̅ )

𝜕𝑡
+ ∇ ∙ (𝜌𝑢⃗ 𝑣̅̅ ̅̅ ̅) = ∇ ∙ (𝜇∇𝑣̅) −

𝜕𝑃̅

𝜕𝑦
+ [−

𝜕(𝜌̅𝑣′𝑢′̅̅ ̅̅ ̅̅ ̅)

𝜕𝑥
−
𝜕(𝜌̅𝑣′2̅̅ ̅̅ ̅̅ )

𝜕𝑦
−
𝜕(𝜌̅𝑣′𝑤′̅̅ ̅̅ ̅̅ ̅)

𝜕𝑧
] + 𝑆𝑣 

(4.88) 

𝜕(𝜌𝑤̅̅ ̅̅ )

𝜕𝑡
+ ∇ ∙ (𝜌𝑢⃗ 𝑤̅̅ ̅̅ ̅̅ ) = ∇ ∙ (𝜇∇𝑤̅) −

𝜕𝑃̅

𝜕𝑧
+ [−

𝜕(𝜌̅𝑤′𝑢′̅̅ ̅̅ ̅̅ ̅)

𝜕𝑥
−
𝜕(𝜌̅𝑤′𝑣′̅̅ ̅̅ ̅̅ ̅̅ )

𝜕𝑦
−
𝜕(𝜌̅𝑤′2̅̅ ̅̅ ̅̅ )

𝜕𝑧
] + 𝑆𝑤 

(4.89) 

𝜕(𝜌𝑇̅̅̅̅ )

𝜕𝑡
+ ∇ ∙ (𝜌𝑢⃗ 𝑇̅̅ ̅̅ ̅̅ ) = ∇ ∙ (𝜇∇𝑇̅) + [−

𝜕(𝜌̅𝑢′𝑇′̅̅ ̅̅ ̅̅ ̅)

𝜕𝑥
−
𝜕(𝜌̅𝑣′𝑇′̅̅ ̅̅ ̅̅ ̅)

𝜕𝑦
−
𝜕(𝜌̅𝑤′𝑇′̅̅ ̅̅ ̅̅ ̅̅ )

𝜕𝑧
] + 𝑆𝑇 

(4.90) 
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 A solução deste conjunto de equações, denominado Reynolds Averaged 

Navier-Stokes (RANS) ou Favre Averaged Navier-Stokes traz dificuldades 

computacionais tendo em vista a escala de tempo e de comprimento dos fenômenos 

envolvidos. Há, conforme exposto em Malalasekera (1995) três principais modos de 

solução para tal conjunto de equações.  

O primeiro diz respeito a simulação de grandes vórtices, baseado na 

simulação em regime transiente que computa os vórtices de maior dimensão 

rejeitando os de escalas de comprimento diminuta, que passam a ser considerados 

a partir da adoção de um sub-grid. Este problema traz dificuldades em relação ao 

tempo de processamento dada a necessidade de simular todo o transiente em 

malhas pequenas além de problemas com geometrias complexas. 

A solução direta da RANS se mostra de difícil implementação até os dias 

atuais tendo em vista a escala diminuta do fenômeno da turbulência tanto em termos 

de tempo como em escalas de comprimento, requisitando malhas muito finas e 

passos temporais muito diminutos a fim de capturar toda a história do escoamento, 

garantindo, desta forma, convergência. Dadas estas necessidades, não há recurso 

computacional disponível para a solução direta de maneira adequada, inviabilizando 

seu uso. 

Por fim há o tratamento das equações a partir do uso de modelos de 

turbulência para a solução do escoamento. Esta modalidade de solução consiste em 

analisar as propriedades médias do escoamento e o efeito que as variações impõem 

sobre estas através da inclusão de novas equações ao sistema já explicitado. Em 

geral são classificados de acordo com o número de equações diferenciais que 

introduzem a resolução do problema, tal como explicitado em Cebeci (2004), 

literatura esta que em conjunto com ANSYS (2009) traz discussões acerca de uma 

série de modelos de turbulência. 

No presente caso será utilizado um modelo de turbulência de duas equações 

diferenciais baseado nas hipóteses de Boussinesq para as tensões de Reynolds a 

ser discutido brevemente posteriormente. Antes, vale uma revisão acerca de dois 
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modelos de duas equações diferenciais bastante difundidos: 𝑘 − 𝜖 standard e 𝑘 − 𝜔 

standard. 

 

4.5.2. Modelos de turbulência 

 

4.5.2.1. O modelo 𝑘 − 𝜖 standard 

 

 O modelo 𝑘 − 𝜖 standard é basedo no conceito da viscosidade induzida pelos 

vórtices. Sua nomenclatura se deve as variáveis introduzidas na resolução das 

equações diferenciais: 𝑘  a energia cinética turbulenta e 𝜖  a taxa de dissipação 

viscosa, dadas por: 

𝑘 =
1

2
𝑢𝑖′𝑢𝑖′̅̅ ̅̅ ̅̅  

𝜖 =
𝜇

𝜌

𝜕𝑢𝑖′

𝜕𝑥𝑗

𝜕𝑢𝑖′

𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

Os valores de 𝑘  e 𝜖  são utilizados para definir as escalas de velocidade e 

comprimento característicos do escoamento turbulento, dados por: 

ℓ =
𝑘
3
2

𝜖
 

𝜗 = 𝑘
1
2 

As equações introduzidas no sistema de equações formado pelas RANS são 

análogas aquelas de transportes já deduzidas, sendo sempre um balanço das taxas 

de geração de 𝑘 e 𝜖 , transporte convectivo e difusivo das propriedaes, além das 

taxas de produção e destruição das mesmas. As equações (4.91) e (4.92) trazem 

ambas equações diferenciais. 
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𝜕(𝜌𝑘)

𝜕𝑡
+ ∇ ∙ (𝜌𝑢⃗ 𝑘) = ∇ ∙ (

𝜇𝑡
𝜎𝑘
∇𝑘) + 2𝜇𝑡𝑆𝑖𝑗 ∙ 𝑆𝑖𝑗 − 𝜌𝜖 

(4.91) 

𝜕(𝜌𝜖)

𝜕𝑡
+ ∇ ∙ (𝜌𝑢⃗ 𝜖) = ∇ ∙ (

𝜇𝑡
𝜎𝜖
∇𝜖) + 2𝐶1𝜖

𝜖

𝑘
𝜇𝑡𝑆𝑖𝑗 ∙ 𝑆𝑖𝑗 − 𝐶2𝜖𝜌

𝜖2

𝑘
 

(4.92) 

 

Com 𝜇𝑡 a viscosidade induzida por vórtices, dada, através de análise dimensional, 

pela equação (4.93). 

 

𝜇𝑡 = 𝜌𝐶𝜇
𝑘2

𝜖
 

(4.93) 

 

Sendo, também, 𝑆𝑖𝑗 o tensor de deformações, dado por (4.94). 

 

𝑆𝑖𝑗 = [

𝑠𝑥𝑥 𝑠𝑥𝑦 𝑠𝑥𝑧
𝑠𝑦𝑥 𝑠𝑦𝑦 𝑠𝑦𝑧
𝑠𝑧𝑥 𝑠𝑧𝑦 𝑠𝑧𝑧

] 
(4.95) 

 

Com 

𝑠𝑥𝑥 =
𝜕𝑢

𝜕𝑥
+
𝜕𝑢′

𝜕𝑥
 

𝑠𝑦𝑦 =
𝜕𝑣

𝜕𝑦
+
𝜕𝑣′

𝜕𝑦
 

𝑠𝑧𝑧 =
𝜕𝑤

𝜕𝑧
+
𝜕𝑤′

𝜕𝑧
 

𝑠𝑥𝑦 = 𝑠𝑦𝑥 =
1

2
(
𝜕(𝑢 + 𝑢′)

𝜕𝑦
+
𝜕(𝑣 + 𝑣′)

𝜕𝑥
) 

𝑠𝑥𝑧 = 𝑠𝑧𝑥 =
1

2
(
𝜕(𝑢 + 𝑢′)

𝜕𝑧
+
𝜕(𝑤 + 𝑤′)

𝜕𝑥
) 

𝑠𝑦𝑧 = 𝑠𝑧𝑦 =
1

2
(
𝜕(𝑤 + 𝑤′)

𝜕𝑦
+
𝜕(𝑣 + 𝑣′)

𝜕𝑧
) 
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Conforme previamente dito, o modelo 𝑘 − 𝜖 standard é baseado nas hipóteses de 

Boussinesq, garantindo que as tensões de Reynolds sejam dadas pela equação 

(4.96). 

−𝜌𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ = 2𝜇𝑆𝑖𝑗 −
2

3
𝜇𝑘𝛿𝑖𝑗 

(4.96) 

 

Com 𝛿𝑖𝑗 o tensor delta de Kronecker, o qual 𝛿 = 1 quando i = j e 𝛿 = 0 quando 𝑖 ≠ 𝑗. 

As constantes adotadas para o modelo são resumidas na tabela 4.1 e foram 

adotadas a partir de extensa interpolação em variados escoamentos turbulentos. 

 

Tabela 4.1 – Coeficientes usuais para o modelo 𝑘 − 𝜖 standard 

Coeficiente Valor 

𝐶𝜇 0,09 

𝜎𝑘 1,00 

𝜎𝜖 1,30 

𝐶1𝜖 1,44 

𝐶2𝜖 1,92 

 

 Este modelo traz dificuldades na avaliação das características do escoamento 

nas proximidades da parede, daí a necessidade do uso de funções de parede, 

principalmente para avaliação do escoamento nestas proximidades em valores de 

número de Reynolds grandes e com gradientes adversos de pressão. Tal problema 

foi extensivamente estudado, destacando-se os extensivos esforços de Spalding 

(1970, 1973, 1977, 1980) em gerar e demonstrar resultados obtidos por outros 

pesquisadores. Malalasekera (1995), propõe o uso de funções de parede tais como 

descritas por (4.97) e (4.98). 

 

𝑢+ =
1

𝜅
ln(𝐸𝑦𝑝

+) , 𝑘 =
𝑢𝜏
2

√𝐶𝜇
, 𝜖 =

𝑢𝜏
3

𝜅𝑦
 

(4.97) 

𝑇+ = 𝜎𝑇,𝑡 (𝑢
+ + 𝑃 [

𝜎𝑇,𝑙
𝜎𝑇,𝑡

]) 
(4.98) 
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Com 𝜅 = 0,41 a constante de Von Karman, 𝐸 = 9,8 como parâmetro da rugosidade 

da parede, 𝜎𝑇,𝑡 o número de Prandtl turbulento, 𝜎𝑇,𝑙 = 𝜇𝐶𝑝/Γ𝑇 o número de Prandtl 

laminar, com Γ𝑇 a condutividade térmica. 𝑃 é uma função de correção que depende 

da razão entre os números de Prandtl laminar e turbulento. 

 

4.5.2.2. O modelo 𝑘 − 𝜔 

 

 A maior diferença entre este modelo e o modelo 𝑘 − 𝜖 está na escolha da 

escala de comprimento utilizada, deixando de ser baseada na taxa de disspação 

viscosa, 𝜖, e passando a se basear na frequência turbulenta, dada por: 

𝜔 =
𝜖

𝑘
 

Garantindo que: 

ℓ =
√𝑘

𝜔
 

As equações de transporte são parecidas com aquelas do modelo 𝑘 − 𝜖, sendo 

dadas por: 

 

𝜕(𝜌𝑘)

𝜕𝑡
+ ∇ ∙ (𝜌𝑢⃗ 𝑘) = ∇ ∙ (

𝜇𝑡
𝜎𝑘
∇𝑘) + 𝑃𝑘 − 𝛽

∗𝜌𝑘𝜔 
(4.99) 

𝜕(𝜌𝜔)

𝜕𝑡
+ ∇ ∙ (𝜌𝑢⃗ 𝜔) = ∇ ∙ ((𝜇 +

𝜇𝑡
𝜎𝜔
) ∇𝜔) + 𝛾1 (2𝜌𝑆𝑖𝑗 ∙ 𝑆𝑖𝑗 −

2

3
𝜌𝜔

𝜕𝑢𝑖
𝜕𝑥𝑗

𝛿𝑖𝑗) − 𝛽1𝜌𝜔
2 

(4.100) 

 

Com 

𝑃𝑘 = 2𝜇𝑆𝑖𝑗 ∙ 𝑆𝑖𝑗 −
2

3
𝜌𝑘
𝜕𝑢𝑖
𝜕𝑥𝑗

𝛿𝑖𝑗 

E os coeficientes listados na tabela 4.2. 
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Tabela 4.2 – Coeficientes usuais para o modelo 𝑘 − 𝜖 

Coeficiente Valor 

𝛾1 0,553 

𝜎𝑘 2,00 

𝜎𝜔 2,00 

𝛽1 0,075 

𝛽∗ 0,09 

 

As tensões de Reynolds são dadas por: 

−𝜌𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ = 𝜇𝑡 (
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3
𝜌𝑘𝛿𝑖𝑗 

E 

𝜇𝑡 = 𝜌
𝑘

𝜔
 

 Esta abordagem é vista com bons olhos tendo em vista a habilidade em lidar 

com regiões próximas as paredes, onde os efeitos viscoses e gradientes adversos 

de pressão são importantes, sem a utilização de funções de parede para amortecer 

a solução. A grande dificuldade em sua aplicação reside no fato da dependência da 

solução do valor adotado para 𝜔  em escoamentos livres, tal como em regiões 

distantes a um corpo imerso em fluído, o que acarreta em resultados errados. 

 

4.5.2.3. Modelo 𝑘 − 𝜔 SST (Shear Stress Transport) 

 

 Este modelo, proposto por Menter, alia as vantagens de cada um dos 

modelos previamente apresentados. Ou seja, a habilidade do 𝑘 − 𝜖  em lidar com 

escoamentos a distância da parede e o tratamento adequado do 𝑘 − 𝜔  para o 

tratamento próximo as paredes. Isto faz dele um modelo bastante adequado para 

aplicações gerais na simulação computacional de escoamentos. 

 Em termos de equações, Menter basicamente utilizou a equação diferencial 

para a energia cinética turbulenta oriunda do modelo 𝑘 − 𝜔 e substituiu 𝜖 por 𝑘𝜔 a 
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fim de obter uma nova equação diferencial para 𝜔. Resumidamente são dadas pelas 

equações (4.101) e (4.102). 

 

𝜕(𝜌𝑘)

𝜕𝑡
+ ∇ ∙ (𝜌𝑢⃗ 𝑘) = ∇ ∙ (

𝜇𝑡
𝜎𝑘
∇𝑘) + 𝑃𝑘 − 𝛽

∗𝜌𝑘𝜔 
(4.101) 

𝜕(𝜌𝜔)

𝜕𝑡
+ ∇ ∙ (𝜌𝑢⃗ 𝜔)

= ∇ ∙ ((𝜇 +
𝜇𝑡
𝜎𝜔,1

)∇𝜔) + 𝛾2 (2𝜌𝑆𝑖𝑗 ∙ 𝑆𝑖𝑗 −
2

3
𝜌𝜔

𝜕𝑢𝑖
𝜕𝑥𝑗

𝛿𝑖𝑗) − 𝛽2𝜌𝜔
2

+ 2
𝜌

𝜎𝜔,2

𝜕𝑘

𝜕𝑥𝑘

𝜕𝜔

𝜕𝑥𝑘
 

 

 

(4.102) 

 

Novos coeficientes foram obtidos para o modelo, sendo eles listados na tabela 4.3. 

 

Tabela 4.3 – Coeficientes usuais para o modelo 𝑘 − 𝜖 SST 

Coeficiente Valor 

𝛾2 0,44 

𝜎𝑘 1,00 

𝜎𝜔,1 2,00 

𝜎𝜔,2 1,17 

𝛽2 0,083 

𝛽∗ 0,09 

 

Sabendo que utilizar a abordagem do modelo 𝑘 − 𝜖 para o cômputo das 

propriedades ao longe e do 𝑘 − 𝜔 para o das propriedades próximas a parede, há, 

invariavlemente, transições bruscas entre as regiões o que requer funções que 

“relaxem” as propriedades. Um exemplo se dá tomando o termo 𝐶1 do modelo 𝑘 − 𝜖 

e 𝐶2 do modelo 𝑘 − 𝜔, acarretando em: 

𝐶 = 𝐶1𝐹𝑐 + (1 − 𝐹𝑐)𝐶2 

Tal como ilustrado em Malalasekera (1995). 𝐹𝑐  é um termo de relaxação que 

depenede tanto das escalas de comprimento quanto do número de Reynolds, sendo 

escolhida de modo que, de maneira suave, seu valor seja nulo na parede e tenda a 

unidade ao longe. 
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 Além da questão das transições abruptas serem suavizadas a partir de 

estratégia parecida com a relaxação, Malalasekera (1995) destaca também a 

limitação da viscosidade induzida por vórtices a fim de garantir adequada solução 

em regiões com gradientes de pressão adversos, bem como limitação da taxa de 

produção da energia cinética turbulenta a fim de evitar acumulo de turbulência em 

regiões estagnadas. 

𝜇𝑡 =
𝑎1𝜌𝑘

max (𝑎1𝜔, 𝐹2√2𝑆𝑖𝑗 ∙ 𝑆𝑖𝑗)
 

𝑃𝑘 = 𝑚𝑖𝑛 (10𝛽
∗𝜌𝑘𝜔, 2𝜇𝑡𝑆𝑖𝑗 ∙ 𝑆𝑖𝑗 −

2

3
𝜌𝑘
𝜕𝑢𝑖
𝜕𝑥𝑗

𝛿𝑖𝑗) 

 Dadas as características ótimas deste modelo de turbulência no tratamento 

completo de um escoamento, bem como o menor requisito computacional para a 

solução do problema dada a inclusão de poucas equações diferenciais ao problema, 

diferentemente do que ocorreria com a simulação do escoamento utilizando o 

modelo das tensões de Reynolds o qual inclui número muito maior de equações, 

este será o modelo utilizado para a simulação do escoamento no interior do bocal 

convergente-divergente. 
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5. METODOLOGIA 

 

 

5.1. AVALIAÇÃO PRELIMINAR DO SISTEMA DE PROPULSÃO PARA O 

CASO UNIDIMENSIONAL 

 

5.1.1. Determinação da pressão na câmara de combustão em função do 

tempo 

 

 Esta determinação se baseia na aplicação do balanço de massa ou equação 

da continuidade aplicada a um sistema de propulsão genérico dado pelo volume de 

controle da figura 5.1. 

 

 

Figura 5.1 – Modelo simplificado de um sistema de propulsão de combustível sólido 

 

 Não há qualquer vazão mássica entrando no volume de controle, mas tão 

somente saindo, sendo esta última dada pela vazão mássica através do bocal. Por 

hipóteses simplificadoras, assume-se um bocal convergente-divergente com 

escoamento unidimensional de um gás perfeito, sem troca de calor ou trabalho de 
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eixo, com efeitos gravitacionais desprezíveis e efeitos cinéticos desprezíveis em 

relação a variação de entalpia. A vazão mássica neste, desde que operando 

blocado, é dada pela vazão mássica na garganta deste componente, assim: 

 

𝑚̇𝑠𝑎𝑖 = 𝑚̇𝑏𝑜𝑐𝑎𝑙 = 𝜌𝑔𝑎𝑟𝑔𝑎𝑛𝑡𝑎𝑉𝑔𝑎𝑟𝑔𝑎𝑛𝑡𝑎𝐴𝑔𝑎𝑟𝑔𝑎𝑛𝑡𝑎 (5.1) 

 

Desta forma, sendo o gás perfeito, segundo os índices da figura 5.x: 

 

𝑚̇𝑠𝑎𝑖 =
𝑝2
𝑅𝑇2

𝑀2√𝑘𝑅𝑇2𝐴2 
(5.2) 

 

Mas, do escoamento isentrópico de um fluído compressível tem-se que 

 

𝑝0 = 𝑝𝑖 (1 +
𝑘 − 1

2
𝑀𝑖

2)

𝑘
𝑘−1

 

𝑇0 = 𝑇𝑖 (1 +
𝑘 − 1

2
𝑀𝑖

2) 

𝑘 =
𝑐𝑝

𝑐𝑣
=

𝑐𝑝

𝑐𝑝 − 𝑅
 

 

Com o índice 0 representando o estado de estagnação e, i a propriedade estática. 

Neste caso, o estado de estagnação é dado pela própria pressão e temperatura no 

interior da câmara de combustão, amos variáveis com o tempo. Estes estados de 

estagnação podem ser demonstrados aplicando a 1ª Lei da termodinâmica ao 

escoamento bem como a expressão da relação de pressões de estagnação para o 

processo isentrópico, tal como demonstrado em Zucker (1978). Fazendo as 

substituições na expressão da vazão mássica que sai do volume de controle: 
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𝑚̇𝑠𝑎𝑖 = 𝑝𝑐𝑀2𝐴2
√ 𝑘

𝑅𝑇𝑐
(

1

1 +
𝑘 − 1
2 𝑀2

2
)

𝑘+1
𝑘−1

 

 

(5.3) 

 

 A vazão mássica gerada é dada pela formação de gases de combustão a 

partir da queima do propelente sólido, podendo ser quantificada segundo a equação 

5.4. 

 

𝑚̇𝑔𝑒𝑟 = 𝜌𝑐𝑜𝑚𝑏𝑟𝐴𝑐𝑜𝑚𝑏 = 𝜌𝑐𝑜𝑚𝑏(𝑎𝑝𝑐
𝑛)𝐴𝑐𝑜𝑚𝑏 (5.4) 

 

Com 𝜌𝑐𝑜𝑚𝑏 a massa específica do combustível e 𝐴𝑐𝑜𝑚𝑏 a área de queima do 

propelente sólido, variável com o tempo segundo 

 

𝐴𝑐𝑜𝑚𝑏(𝑡) = 2𝜋𝐿 (
𝐷0
2
+ 𝑟𝑡) 

 

com 𝐷0 o diâmetro inicial da cavidade interna, L o comprimento do grão propelente 

para o caso de um cilindro vazado, caso a ser analisado no presente texto. É notório 

que a área limite é dada pela carcaça da câmara de combustão, sendo a vazão 

mássica gerada nula quando este limite ocorrer, isto é, quando deixar de haver 

propelente a ser queimado não há mais geração de gases, mas tão somente o 

escoamento daquele que já ocupa o volume da câmara até que esta se esvazie. 

 Por fim é necessário avaliar a taxa de massa acumulada no volume de 

controle, sendo esta dada por: 

 

𝑚̇𝑎𝑐 =
𝑑(𝜌𝑔𝑉𝑔)

𝑑𝑡
= 𝜌𝑔

𝑑𝑉𝑔

𝑑𝑡
+ 𝑉𝑔

𝑑𝜌𝑔

𝑑𝑡
 

(5.5) 
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com 𝑉𝑔 o volume ocupado pelos gases oriundos da combustão, variável conforme se 

processa o consumo do grão-propelente; e 𝜌𝑔 a densidade dos gases produzidos no 

processo de combustão que, se supostos perfeitos: 

 

𝑚̇𝑎𝑐 =
𝑝𝑐
𝑅𝑇𝑐

𝑑𝑉𝑔

𝑑𝑡⏟
𝑟𝐴𝑐𝑜𝑚𝑏

+
𝑉𝑔

𝑅𝑇𝑐

𝑑𝑝𝑐
𝑑𝑡

=
𝑝𝑐𝐴𝑐𝑜𝑚𝑏
𝑅𝑇𝑐

𝑎𝑝𝑐
𝑛 +

𝑉𝑔

𝑅𝑇𝑐

𝑑𝑝𝑐
𝑑𝑡

 
(5.6) 

 

 Assim, do balanço de massa: 

 

𝑚̇𝑎𝑐 = 𝑚̇𝑒𝑛𝑡⏟
=0

− 𝑚̇𝑠𝑎𝑖 + 𝑚̇𝑔𝑒𝑟 ⟹ 

⟹
𝑝𝑐𝐴𝑐𝑜𝑚𝑏
𝑅𝑇𝑐

𝑎𝑝𝑐
𝑛 +

𝑉𝑔

𝑅𝑇𝑐

𝑑𝑝𝑐
𝑑𝑡

= −𝑝𝑐𝑀2𝐴2
√ 𝑘

𝑅𝑇𝑐
(

1

1 +
𝑘 − 1
2

𝑀2
2
)

𝑘+1
𝑘−1

+ 𝜌𝑐𝑜𝑚𝑏(𝑎𝑝𝑐
𝑛)𝐴𝑐𝑜𝑚𝑏 ⟹ 

⟹
𝑑𝑝𝑐
𝑑𝑡

=
𝑅𝑇𝑐
𝑉𝑔

[
 
 
 
 
 

𝑎𝐴𝑐𝑜𝑚𝑏 (𝜌𝑐𝑜𝑚𝑏 −
𝑝
𝑐

𝑅𝑇𝑐
)𝑝𝑐

𝑛 − 𝑝
𝑐
𝑀2𝐴2

√ 𝑘

𝑅𝑇𝑐
(

1

1 +
𝑘 − 1
2

𝑀2
2
)

𝑘+1
𝑘−1

]
 
 
 
 
 

 

 

Que é uma equação diferencial ordinária não homogênea. Tal será implementada 

computacionalmente através do método de Runge-Kutta de 4ª ordem, havendo 

substituição da área de combustão pela relação que leva em conta uma geometria 

particular. Desta forma, pode-se dizer que esta é uma expressão simplificada geral 

para avaliação da pressão da câmara da combustão em função do tempo. 

 Nota-se que não foi levado em conta que o bocal está blocado, tendo em vista 

que esta condição depende da pressão no interior da câmara de combustão e da 

pressão externa. A cada instante da rotina de solução da equação diferencial tal 

condição será verificada, bem como a atualização de cada um dos parâmetros 
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variáveis com a pressão, no caso a temperatura no interior da câmara de 

combustão. Também serão atualizados a área de combustão e o volume no interior 

da câmara. 

 Em uma primeira aproximação, dadas as hipóteses já consideradas, será 

assumido que cada etapa de integração da equação diferencial será um processo 

quasi-estático, desta forma, a relação entre pressão e temperatura no interior da 

câmara de combustão será dada por: 

 

𝑇𝑐𝑖+1 = (
𝑝𝑐𝑖+1
𝑝𝑐𝑖

)

𝑘−1
𝑘

𝑇𝑐𝑖 

 

5.1.2. Determinação do empuxo num bocal unidimensional 

 

 A força de empuxo associada ao escoamento de gases de combustão baseia-

se na conservação da quantidade de movimento. A expressão que possibilita seu 

computo, encontrada em Taylor (2009), Zucker (1978), Zucrow (19xx), Shapiro 

(19xx), Sutton (2001) dentre outras, e de fácil dedução é dada pela expressão (5.7). 

 

𝐹 = 𝑚̇𝑉3 + (𝑝3 − 𝑝𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟)𝐴3 (5.7) 

 

Com o índice 3 tal como apresentado na figura 5.1, desta forma, 𝑉3 é a velocidade 

na seção de descarga do bocal, 𝑝3 e 𝑝𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟 as pressões na seção de descarga do 

bocal e do receptor (ambiente, no caso), respectivamente. 𝑚̇ é a vazão mássica no 

bocal. Esta expressão fornece meios quantitativos de estimar a força de empuxo 

fornecida por determinada configuração e tipo de propelente sólido, permitindo 

verificar se fornece a força necessária para decolagem e ascensão do artefato, no 

caso, do míssil balístico. 
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 A velocidade na seção de descarga pode ser estimada a partir das hipótese já 

enunciadas na seção 5.1 para o escoamento no bocal, sedo esta dada por: 

 

𝑉3 = 𝑀3√𝑘𝑅𝑇3 = 𝑀3√𝑘𝑅
𝑇𝑐

1 +
𝑘 − 1
2 𝑀3

2
 

(5.8) 

  

Com o número de Mach na seção de descarga podendo ser determinado a partir da 

razão de áreas entre esta seção e a garganta, supostas como variáveis de projeto: 

 

𝐴3
𝐴2
=
𝑀2
𝑀3
[
1 + (

𝑘 − 1
2 )𝑀3

2

1 + (
𝑘 − 1
2 )𝑀2

2
]

𝑘+1
2(𝑘−1)

 

 

Analogamente, a pressão na seção descarga é dada por: 

 

𝑝3 =
𝑝𝑐

(1 +
𝑘 − 1
2 𝑀3

2)

𝑘
𝑘−1

 

 

E a vazão mássica, da equação da continuidade, pode ser dada pela própria vazão 

na seção da garganta do bocal, conforme a equação 5.9: 

 

𝑚̇2 = 𝑝𝑐𝑀2𝐴2
√ 𝑘

𝑅𝑇𝑐
(

1

1 +
𝑘 − 1
2 𝑀2

2
)

𝑘+1
𝑘−1

 

 

(5.9) 
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 Assim, fazendo as substituições adequadas, a equação 5.7 pode ser escrita 

como: 

 

𝐹 = 𝑘𝑝𝑐𝑀2𝑀3𝐴2
√ 1

1 +
𝑘 − 1
2

𝑀3
2
(

1

1 +
𝑘 − 1
2

𝑀2
2
)

𝑘+1
𝑘−1

̇

+

(

 
 𝑝𝑐

(1 +
𝑘 − 1
2

𝑀3
2)

𝑘
𝑘−1

− 𝑝𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟

)

 
 
𝐴3 

 

(5.10) 

 

O empuxo pode ser avaliado conforme o tempo de combustão segundo 

variação na pressão do interior da câmara de combustão, cuja equação diferencial 

que rege o fenômeno já fora deduzida na seção 5.1. 

 

5.2. PROJETO BIDIMENSIONAL DE UM BOCAL CONVERGENTE-DIVERGENTE 

 

5.2.1. Projeto da porção divergente pelo método das características 

 

Para a aplicação do método das características para a determinação da geometria 

de um bocal divergente de mínimo comprimento utilizou-se uma solução numérica 

baseada no equacionamento proposto em Hodge (1995) e Anderson (2003), já 

exposto na seção 2.2 da revisão bibliográfica. Aqui será descrito em detalhes como 

se estruturou o programa. 

 

5.2.1.1. Determinação dos valores de 𝜃, 𝜈, 𝐾+, 𝐾−, 𝑀 𝑒 𝜇 

 

 Como ponto de partida para a determinação das propriedades de cada 

característica, isto é, os invariantes de Riemann positivo e negativo, ângulo do vetor 

velocidade em relação ao eixo das abscissas - aqui suposto horizontal – bem como 

o ângulo de Prandtl-Meyer, ângulo entre a característica e o vetor velocidade e 



96 

 

também o número de Mach, é necessário se dispor do número de Mach na seção de 

saída o que possibilita o cálculo do ângulo máximo da seção de expansão do bocal, 

segundo: 

𝜃𝑚𝑎𝑥 =
1

2
 𝜈(𝑀𝑠𝑎í𝑑𝑎) 

(5.11) 

  

Com: 

𝜈(𝑀) = √
𝑘 + 1

𝑘 − 1
𝑎𝑟𝑐𝑡𝑔(√

𝑘 − 1

𝑘 + 1
√𝑀2 − 1) − 𝑎𝑟𝑐𝑡𝑔 (√𝑀2 − 1) 

 

(5.12) 

 

 

A figura 5.2 traz a dinâmica da nomenclatura dos pontos para os quais as 

propriedades serão calculadas. Note que em cada característica, a despeito do 

primeiro ponto comum a todas, cada uma possui a quantidade de pontos de 

interesse igual ao número de características mais um (𝑛 + 1). Também é de fácil 

percepção que, segundo a nomenclatura, todos os pontos são da forma (𝑖, 𝑗) = (𝑗, 𝑖), 

fato este que foi utilizado para o cômputo das propriedades. 

 

Figura 5.2 – Exemplo da geometria de um bocal divergente e de suas características 
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 Ainda da figura 5.2 pode-se notar que os pontos da primeira característica 

dependem todos apenas do ângulo que o vetor velocidade faz com o eixo das 

abscissas do sistema de referência. Nota-se que a primeira linha na realidade é 

aquela perpendicular à parede da garganta na qual o número de Mach é unitário. 

Utilizá-la como característica não seria de grande ajuda tendo em vista que que sua 

reflexão com a linha de centro, suposta uma parede com vetores velocidades 

paralelos ao escoamento, a levaria ao mesmo ponto, e não a parede externa do 

bocal. Desta forma, a primeira característica a ser considerada possui vetor 

velocidade com ângulo 𝜃𝑖𝑛𝑖𝑐𝑖𝑎𝑙  tão pequeno quanto se queira, sendo cada outra 

característica a seguir com tal ângulo calculado a partir deste mais uma variação 

dada por: 

Δ𝜃 =
𝜃𝑚𝑎𝑥 − 𝜃𝑖𝑛𝑖𝑐𝑖𝑎𝑙

𝑛 − 1
 

(5.13) 

 

 

Desta forma, os primeiros pontos tem como valores dos ângulos característicos e 

constantes de Riemman dados por: 

 

𝜃1,𝑗 = 𝜃𝑖𝑛𝑖𝑐𝑖𝑎𝑙 + (𝑗 − 1)Δ𝜃 (5.14) 

𝜈1,𝑗 = 𝜃1,𝑗 (5.15) 

𝑘−1,𝑗 = 𝜃1,𝑗 + 𝜈1,𝑗 (5.16) 

𝑘+1,𝑗 = 𝜃1,𝑗 − 𝜈1,𝑗 (5.17) 

 

 Conforme já descrito, tem-se que (𝑖, 𝑗) = (𝑗, 𝑖) para cada ponto de encontro 

das linhas características. Portanto, o primeiro ponto de cada uma das demais 

características, à exceção do mais externo, é dado por: 

 

𝜃𝑗,1 = 𝜃1,𝑗 (5.18) 

𝜈𝑗,1 = 𝜈1,𝑗 (5.19) 

𝑘−𝑗,1 = 𝑘−1,𝑗 (5.20) 
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𝑘+𝑗,1 = 𝑘+1,𝑗 (5.21) 

 

 Os pontos que tocam a linha de centro tem índices da forma  (𝑖, 𝑖). Nota-se 

que, conforme já definido, a linha de centro será tratada como uma parede com os 

vetores velocidades paralelos a a ela, isto é, há uma linha de corrente paralela a tal 

eixo, desta forma 

𝜃𝑖,𝑖 = 𝜃𝑙𝑖𝑛ℎ𝑎 𝑑𝑒 𝑐𝑒𝑛𝑡𝑟𝑜 = 0 

Da análise da figura 5.1 tem-se também que tais pontos tem o mesmo invariante de 

Riemann negativo que os pontos de índice (𝑖, 𝑖 − 1), o que possibilita facilmente o 

cálculo dos demais ângulos e invariantes que restam: 

 

𝐾−𝑖,𝑖 = 𝐾−𝑖,𝑖−1 =  𝜃𝑙𝑖𝑛ℎ𝑎 𝑑𝑒 𝑐𝑒𝑛𝑡𝑟𝑜⏟        
=0

+ 𝜈𝑖,𝑖 ⟹ 

⟹ 𝜈𝑖,𝑖 = 𝐾−𝑖,𝑖−1  (5.22) 

 

Acarretando em: 

 

𝐾+𝑖,𝑖 = 𝜃𝑖,𝑖 − 𝜈𝑖,𝑖  (5.23) 

 

 Findados os cálculos destes valores para estes primeiros pontos de 

intersecção entre as características, passa a ser necessário tais cômputos para os 

pontos internos. É fácil notar que cada um destes pontos goza dos mesmos 

invariante de Riemann positivo e negativos que os pontos (𝑖, 𝑗 − 1)  e (𝑖, 𝑗 − 2) , 

respectivamente. Entretanto há uma dificuldade na implantação usando esta 

notação de pontos tendo em vista que o ponto (3,2), por exemplo, não tem como 

acessar o (3,0), devendo se valer dos pontos (3,1) e (2,2). Ou seja, pontos de índice 

da forma (𝑖, 𝑗) com 𝑖 > 𝑗 devem seguir condição diferente daqueles com 𝑗 > 𝑖. Desta 

forma uma condição adicional é necessária para o cômputo dos valores associados 
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a tais pontos. As equações a seguir listadas fornecem, junto com a condição o 

método proposto para o cálculo. 

Se (𝑖, 𝑗) com 𝑖 > 𝑗 

𝑘−𝑖,𝑗 = 𝑘−𝑖,𝑗−1 (5.24) 

𝑘+𝑖,𝑗 = 𝑘+𝑖−1,𝑗 (5.25) 

𝜃𝑖,𝑗 =
1

2
(𝑘−𝑖,𝑗 + 𝑘+𝑖,𝑗)  

(5.26) 

𝜈𝑖,𝑗 =
1

2
(𝑘−𝑖,𝑗 − 𝑘+𝑖,𝑗)  

(5.27) 

 

Se (𝑖, 𝑗) com 𝑖 < 𝑗 

𝑘−𝑖,𝑗 = 𝑘−𝑖,𝑗−2 (5.28) 

𝑘+𝑖,𝑗 = 𝑘+𝑖,𝑗−1 (529) 

𝜃𝑖,𝑗 =
1

2
(𝑘−𝑖,𝑗 + 𝑘+𝑖,𝑗)  

(5.30) 

𝜈𝑖,𝑗 =
1

2
(𝑘−𝑖,𝑗 − 𝑘+𝑖,𝑗)  

(5.31) 

 

 Por fim, os últimos pontos, aqueles que também farão parte da parede 

externa do bocal gozam dos mesmos valores que os seus anteriores da mesma 

característica, desta forma: 

 

𝑘−𝑖,𝑛+1 = 𝑘−𝑖,𝑛 (5.32) 

𝑘+𝑖,𝑛+1 = 𝑘+𝑖,𝑛 (5.33) 

𝜃𝑖,𝑛+1 =
1

2
(𝑘−𝑖,𝑛+1 + 𝑘+𝑖,𝑛+1)  

(5.34) 

𝜈𝑖,𝑛+1 =
1

2
(𝑘−𝑖,𝑛+1 − 𝑘+𝑖,𝑛+1)  

(5.35) 

 

 Como agora se tem posse de todos os valores dos invariantes de Riemann, 

ângulos em relação ao eixo horizontal do sistema de coordenadas e dos ângulos de 
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Prandtl-Meyer, é trivial calcular o número de Mach e o ângulo da linha característica 

em relação ao vetor velocidade. Sabe-se que 𝜈 = 𝑓(𝑀, 𝑘) de maneira implicita, desta 

forma é possível através do método de Newton-Raphson (Humes, 1984) determinar 

o número de Mach dado o ângulo de Prandtl-Meyer segundo: 

 

𝑀𝑖,𝑗𝑛𝑜𝑣𝑜 = 𝑀𝑖,𝑗𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟 −
𝑓(𝑀𝑎𝑛𝑡)

𝑓′(𝑀𝑎𝑛𝑡)
 

(5.36) 

  

Com 

𝑓(𝑀𝑎𝑛𝑡) =  √
𝑘 + 1

𝑘 − 1
𝑎𝑟𝑐𝑡𝑔 (√

𝑘 − 1

𝑘 + 1
√𝑀𝑖,𝑗𝑎𝑛𝑡

2 − 1) − 𝑎𝑟𝑐𝑡𝑔 (√𝑀𝑖,𝑗𝑎𝑛𝑡
2 − 1) − 𝜈𝑖,𝑗(𝑀𝑖,𝑗𝑎𝑛𝑡) 

(5.37) 

 

E 

𝑓′(𝑀𝑎𝑛𝑡) =
𝑀𝑖,𝑗𝑎𝑛𝑡

√𝑀𝑖,𝑗𝑎𝑛𝑡
2 − 1 [1 +

𝑘 − 1
𝑘 + 1

(𝑀𝑖,𝑗𝑎𝑛𝑡
2 − 1)]

 
(5.38) 

 

 É preciso notar que a cada iteração o número de Mach anterior é comparado 

ao atual até o ponto em que eles sejam tão próximos quanto se deseja segundo a 

precisão adotada. Até este instante, para cada iteração o valor de Mach anterior 

passa a ser o valor do Mach atual da iteração anterior. Também é importante 

ressaltar o valor inicial dos números de Mach assumidos. No caso dos primeiros 

pontos da malha, o número de Mach esperado é próximo a unidade, desta forma o 

primeiro teste é feito com este. Todos os demais pontos tem como primeiro número 

de Mach aquele calculado para o ponto de intersecção de índice (𝑖, 𝑗 − 1). Nos 

testes realizados sempre houve convergência para valores julgados consistentes 

com os apresentados em Anderson (2003) e Hodge (1995) para casos análogos. 

 Finalmente o valor do ângulo entre a característica e o vetor velocidade de 

cada linha de corrente existente pode ser calculado segundo: 
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𝜇𝑖,𝑗 = 𝑎𝑟𝑐𝑠𝑒𝑛 (
1

𝑀𝑖,𝑗
) 

(5.39) 

 

5.2.1.2. Determinação das coordenadas de cada ponto de intersecção 

 

 Conforme exposto por Hodge (1995), o método das características é de 

sobremodo interessante por permitir a reconstrução das linhas de Mach a partir dos 

pontos de encontro das linhas características (linhas de Mach) e assim determinar o 

perfil da seção do bocal sem saber, a princípio a localização de nenhum ponto da 

malha a exceção daquele do qual as características partem. Tal ponto é 

caracterizado por ser aquele de junção entre a porção divergente e convergente do 

bocal, sendo sua posição definida segundo 𝑥1,1 = 0 e 𝑦1,1 = 𝐷𝑔𝑎𝑟𝑔𝑎𝑛𝑡𝑎/2. Tal ponto é 

o inicial de cada uma das demais linhas características, desta forma: 

𝑥𝑖,1 = 0 e 𝑦𝑖,1 =
𝐷𝑔𝑎𝑟𝑔𝑎𝑛𝑡𝑎

2
. 

 Os pontos de intersecção com a linha de centro podem ser determinados a 

partir da posição de um único ponto anterior e assumindo que 𝑦𝑖,𝑖 = 0. Note que 

como se começou de um ponto (1,1) para o qual não se havia calculado nenhum 

dos parâmetros da seção 5.2.1.1, cada ponto (𝑖, 𝑗) tem os valores utilizados de (𝑖, 𝑗 −

1), o seu ponto real segundo a figura 5.2. 

 

        (a)                                                  (b) 

Figura 5.3 – Pontos de intersecção com a linha de centro 
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 Para o caso (a) da figura 5.3, tem-se que o ponto (1,2) é aquele no qual a 

característica 1 intercepta a linha de centro e reflete, sendo este definido por: 

 

𝑦(1,2)⏟  
=0

= 𝑦(1,1)⏟  
𝐷𝑔𝑎𝑟𝑔𝑎𝑛𝑡𝑎

2

+ 𝑏1 (𝑥(1,2) − 𝑥(1,1)⏟  
=0

) ⟹ 

⟹ 𝑥(1,2) =
−𝐷𝑔𝑎𝑟𝑔𝑎𝑛𝑡𝑎

𝑏1
 

 

 

 

(5.40) 

  

Com  

𝑏1 = 𝑡𝑔(𝜃1,1 − 𝜇1,1)  (5.41) 

 

Para os demais pontos de intersecção com a linha central, tal como a figura 5.3.b: 

 

𝑦(𝑖, 𝑗)⏟  
=0

= 𝑦(𝑖, 𝑗 − 1) + 𝑏1(𝑥(𝑖, 𝑗) − 𝑥(𝑖, 𝑗 − 1)) ⟹ 

⟹ 𝑥(𝑖, 𝑗) = −
𝑦(𝑖, 𝑗 − 1)

𝑏1
+ 𝑥(𝑖, 𝑗 − 1)  

 

 

(5.42) 

 

Com 

 

𝑏1 = 𝑡𝑔 [
1

2
( 𝜃𝑖,𝑗−1⏟  
=𝜃𝑝𝑎𝑟𝑒𝑑𝑒

+ 𝜃𝑖,𝑗 − 𝜇𝑖,𝑗 − 𝜇𝑖,𝑗−1)]  

 

(5.43) 
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                                                 (a)                                                         (b)      

Figura 5.4 – Determinação da posição dos pontos internos da malha interior ao bocal 

 

 Os pontos internos da malha que estão na primeira linha característica podem 

ser calculados segundo: 

 

𝑦(1, 𝑗) = 𝑦(𝑗 − 1,1) + 𝑏1(𝑥(1, 𝑗) − 𝑥(𝑗 − 1,1)) (5.44) 

𝑦(1, 𝑗) = 𝑦(1, 𝑗 − 1) + 𝑏2(𝑥(1, 𝑗) − 𝑥(1, 𝑗 − 1)) (5.45) 

 

Subtraindo as equações (5.45) de (5.44) e isolando 𝑥(1, 𝑗): 

 

𝑥(1, 𝑗) =
𝑦(𝑗 − 1,1) − 𝑦(1, 𝑗 − 1) + 𝑏2𝑥(1, 𝑗 − 1) − 𝑏1𝑥(𝑗 − 1,1)

𝑏2 − 𝑏1
 

(5.46) 

 

Tendo os coeficientes angulares definidos, segundo a convenção da figura 5.2: 

 

𝑏1 = 𝑡𝑔 [
1

2
(𝜃𝑖,𝑗−1 + 𝜃𝑖−1,𝑗−1 − 𝜇𝑖,𝑗−1 − 𝜇𝑖−1,𝑗−1 )]  

(5.47) 
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𝑏1 = 𝑡𝑔 [
1

2
(𝜃𝑖,𝑗−1 + 𝜃𝑖,𝑗−2 + 𝜇𝑖,𝑗−1 + 𝜇𝑖,𝑗−2 )]  

(5.48) 

 

E 𝑦(1, 𝑗) definido por uma das equações (5.44) ou (5.45) 

 Para os demais pontos da malha, à exceção daqueles que encontram a 

parede do bocal, o cálculo é feito segundo a figura 5.4.b. A equação de cada uma 

das retas que liga o ponto anterior ao ponto a ser determinado é dada por: 

 

𝑦(𝑖, 𝑗) = 𝑦(𝑖 − 1, 𝑗) + 𝑏1(𝑥(𝑖, 𝑗) − 𝑥(𝑖 − 1, 𝑗)) (5.49) 

𝑦(𝑖, 𝑗) = 𝑦(𝑖, 𝑗 − 1) + 𝑏2(𝑥(𝑖, 𝑗) − 𝑥(𝑖, 𝑗 − 1)) (5.50) 

 

Subtraindo as equações (5.49) de (5.50) e isolando 𝑥(1, 𝑗): 

 

𝑥 (𝑖, 𝑗) =
𝑦(𝑖 − 1, 𝑗) − 𝑦(𝑖, 𝑗 − 1) + 𝑏2𝑥(𝑖, 𝑗 − 1) − 𝑏1𝑥(𝑖 − 1, 𝑗)

𝑏2 − 𝑏1
 

(5.51) 

 

Tendo os coeficientes angulares definidos, segundo a convenção da figura 5.2 

 

𝑏1 = 𝑡𝑔 [
1

2
(𝜃1,𝑗−1 + 𝜃𝑗−1,1 − 𝜇1,𝑗−1 − 𝜇𝑗−1,1 )]  

(5.52) 

𝑏1 = 𝑡𝑔 [
1

2
(𝜃1,𝑗−1 + 𝜃1,𝑗−2 + 𝜇1,𝑗−1 + 𝜇1,𝑗−2 )]  

(5.53) 

 

E 𝑦(1, 𝑗) definido por uma das equações (5.49) ou (5.50). 
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5.2.1.3. Determinação dos pontos de intersecção entre as linhas características e a 

parede do bocal 

 

 Por fim, a fim de possibilitar a delimitação da parede do bocal, é necessário 

determinar os pontos nos quais as linhas características interceptam este. Anderson 

(2003) propõe que a reta que conecta dois destes tais pontos consecutivos tem 

inclinação dada pela média aritmética entre cada um dos ângulos do pontos notáveis 

em questão em relação ao vetor velocidade assumindo que, como condição de 

contorno, estes vetores sejam tangentes a ela em cada ponto. Isto é, há uma linha 

de corrente que tem o mesmo formato que a parede, o que é razoável lembrando 

que o escoamento é potencial neste caso analisado, conforme já discutido na seção 

2.2. 

 A figura 5.5 ilustra os dois casos a serem analisados no presente momento. A 

figura (a) diz respeito a intersecção entre a primeira característica e a linha de 

contorno da parede do bocal. Já a figura (b) ilustra quaisquer outras linhas em 

características interceptando o contorno do bocal. 

 

(a)                                                                           (b) 

Figura 5.5 – Determinação das coordenadas dos pontos de intersecção entre a parede do bocal e as 

linhas características 

 

A análise inicia-se pelo caso (a) da figura 5.5. Sejam as duas retas ligando os 

pontos assinalados 
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𝑦(1, 𝑛 + 2) = 𝑦(1,1) + 𝑏1(𝑥(1, 𝑛 + 2) − 𝑥(1,1)) (5.54) 

𝑦(1, 𝑛 + 2) = 𝑦(𝑖, 𝑛 + 1) + 𝑏2(𝑥(1, 𝑛 + 2) − 𝑥(1, 𝑛 + 1)) (5.55) 

 

Subtraindo as equações (5.54) de (5.55) e isolando 𝑥(1, 𝑗): 

 

𝑥(1, 𝑛 + 2) =
𝑦(1,1) − 𝑦(1, 𝑛 + 1) + 𝑏2𝑥(1, 𝑛 + 1) − 𝑏1𝑥(1,1)

𝑏2 − 𝑏1
 

(5.56) 

 

Tendo os coeficientes angulares definidos, segundo a convenção da figura 5.2: 

 

𝑏1 = 𝑡𝑔 [
1

2
(𝜃𝑚𝑎𝑥 + 𝜃1,𝑛+1 )]  

(5.57) 

𝑏1 = 𝑡𝑔 [
1

2
(𝜃1,𝑛+1 + 𝜃1,𝑛 + 𝜇1,𝑛+1 + 𝜇1,𝑛 )]  

(5.58) 

 

E 𝑦(1, 𝑛 + 2) definido por uma das equações (5.55) ou (5.54). Estes valores são os 

mesmos que o segundo ponto da parede do bocal, dada por: 

 

𝑧𝑥(1) = 𝑥(1,1) 𝑒 𝑧𝑦(1) = 𝑦(1,1) 

𝑧𝑥(2) = 𝑥(1, 𝑛 + 2)𝑒 𝑧𝑦(2) = 𝑦(1, 𝑛 + 2) 

 

Com a reta que os liga dada por: 

 

𝑧𝑦(2) = 𝑧𝑦(1) + 𝑏1(𝑧𝑥(2) − 𝑧𝑥(1))  (5.59) 

 

Com 𝑏1 calculado. 
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Generalizando para o caso (b) dos demais pontos de encontros das linhas 

características com o bocal:  

 

𝑦(𝑖, 𝑛 + 2) = 𝑦(𝑖 − 1, 𝑛 + 2) + 𝑏1(𝑥(𝑖, 𝑛 + 2) − 𝑥(𝑖 − 1, 𝑛 + 2)) (5.60) 

𝑦(𝑖, 𝑛 + 2) = 𝑦(𝑖, 𝑛 + 1) + 𝑏2(𝑥(𝑖, 𝑛 + 2) − 𝑥(𝑖, 𝑛 + 1)) (5.61) 

 

Subtraindo as equações (5.60) de (5.61) e isolando 𝑥(1, 𝑗): 

 

𝑥(1, 𝑛 + 2) =
𝑦(𝑖 − 1, 𝑛 + 2) − 𝑦(𝑖, 𝑛 + 1) + 𝑏2𝑥(𝑖, 𝑛 + 1) − 𝑏1𝑥(𝑖 − 1, 𝑛 + 2)

𝑏2 − 𝑏1
 
(5.62) 

 

Tendo os coeficientes angulares definidos, segundo a convenção da figura 5.2 

 

𝑏1 = 𝑡𝑔 [
1

2
(𝜃𝑖−1,𝑛+1 + 𝜃𝑖,𝑛+1 )]  

(5.63) 

𝑏2 = 𝑡𝑔 [
1

2
(𝜃𝑖,𝑛+1 + 𝜃𝑖,𝑛 + 𝜇𝑖,𝑛+1 + 𝜇𝑖,𝑛 )]  

(5.64) 

 

E 𝑦(𝑖, 𝑛 + 2) definido por uma das equações (5.60) ou (5.61). Estes valores são os 

mesmos que o segundo ponto da parede do bocal, dada por: 

 

𝑧𝑥(𝑖 + 1) = 𝑥(𝑖, 𝑛 + 2) 𝑒 𝑧𝑦(𝑖 + 1) = 𝑦(𝑖, 𝑛 + 2) 

 

Com a reta que os liga dada por: 

 

𝑧𝑦(𝑖 + 1) = 𝑧𝑦(𝑖) + 𝑏1(𝑧𝑥(𝑖 + 1) − 𝑧𝑥(𝑖))  (5.65) 
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Com 𝑏1 calculado. 

 Com todas as posições calculadas é possível traçar toda a malha interior do 

bocal bem como sua parede externa, o que garante a obtenção da seção de 

descarga e comprimentos ideais para este bocal ter na seção de saída o número de 

Mach desejado com menor gasto possível de material e menor massa. 

 

5.3. DESENVOLVIMENTO DA SOLUÇÃO TRANSIENTE PARA UM BOCAL 

QUASE-UNIDIMENSIONAL 

 

 Com o escopo de fornecer um método para o cálculo do esvaziamento da 

câmara de combustão com a queima do combustível e escoamento do gás 

produzido durante a combustão será apresentado um modelo isentrópico de bocal 

quase-unidimensional com captura do regime transiente tal como apresentado em 

Anderson (1995). A principal preocupação em representar adequadamente a 

dinâmica da câmara de combustão reside no fato de a pressão interna ser de 

fundamental importância no dimensionamento das paredes do vaso no qual estará 

contido o combustível, como também na determinação do empuxo máximo. Vale 

ressaltar, conforme verificado na seção 5.1, que a pressão no interior dessa varia de 

acordo com o processo de degradação do combustível, e este, por sua vez, está 

atrelado a esta dado que a taxa de queima (𝑟̇) é diretamente proporcional a pressão 

da câmara. 

 

5.3.1. Desenvolvimento das equações adimensionalizadas 

 

 Na seção 4.4 foram obtidas as equações diferenciais gerais na forma não-

conservativa, isto é, em termos de derivadas substanciais e convectivas, para o caso 

de um bocal convergente-divergente supersônico em termos das propriedades 

físicas do escoamento, suposto isentrópico e o gás modelado como ideal. 
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𝜕(𝜌𝐴)

𝜕𝑡
+
𝜕(𝜌𝐴𝑉)

𝜕𝑥
= 0 

(4.66) 

𝑝
𝜕𝑉

𝜕𝑡
+ 𝜌𝑉

𝜕𝑉

𝜕𝑥
= −

𝜕𝑝

𝜕𝑥
 

(4.71) 

𝜌𝑐𝑣
𝜕𝑇

𝜕𝑡
+ 𝜌𝑉𝑐𝑣

𝜕𝑇

𝜕𝑥
= −𝑝

𝜕𝑉

𝜕𝑥
− 𝑝𝑉

𝜕(𝑙𝑛𝐴)

𝜕𝑥
 

(4.78) 

 

Seja 𝑇𝑐 a temperatura na câmara de combustão, 𝑝𝑐 a pressão na câmara de 

combustão e 𝜌𝑐 = 𝑝𝑐/𝑅𝑇𝑐 a densidade do gás no interior desta, 𝐿 o comprimento do 

bocal e 𝑐𝑐 = √𝑘𝑅𝑇𝑐  a velocidade do fluído associada a câmara de combustão. A 

partir destes é possível introduzir os adimensionais para área da seção transversal, 

posição, temperatura e densidade do fluído ao longo do escoamento tal como feito 

por Anderson (1995): 

 

𝑡′ =
𝑡

𝐿/𝑐𝑐
 

(5.66) 

𝐴′ =
𝐴

𝐴∗
 (𝐴∗ é 𝑎 á𝑟𝑒𝑎 𝑑𝑎 𝑔𝑎𝑟𝑔𝑎𝑛𝑡𝑎) 

(5.67) 

𝑇′ =
𝑇

𝑇𝑐
 

(5.68) 

𝜌′ =
𝜌

𝜌𝑐
 (5.69) 

𝑉′ =
𝑉

𝑐𝑐
 

(5.70) 

𝑥′ =
𝑥

𝐿
 (5.71) 

 

A facilidade introduzida pelos adimensionais está no fato de generalizar as equações 

para quaisquer valores de comprimento e condições no interior da câmara de 

combustão. De posse dos adimensionais substituindo-os nas equações que regem o 

fenômeno do escoamento (continuidade, quantidade de movimento e energia), tem-

se: 

𝜕𝜌′

𝜕𝑡′
= −𝜌′

𝜕𝑉′

𝜕𝑥′
− 𝜌′𝑉′

𝜕(𝑙𝑛𝐴′)

𝜕𝑥′
− 𝑉′

𝜕𝜌′

𝜕𝑥′
 

(5.72) 
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𝜕𝑉′

𝜕𝑡′
= −𝑉′

𝜕𝑉′

𝜕𝑥′
−
1

𝑘
(
𝜕𝑇′

𝜕𝑥′
+
𝑇′

𝜌′
𝜕𝜌′

𝜕𝑥′
) 

(5.73) 

𝜕𝑇′

𝜕𝑡′
= −𝑉′

𝜕𝑇′

𝜕𝑥′
− (1 − 𝑘)𝑇′ (

𝜕𝑉′

𝜕𝑥′
+ 𝑉′

𝜕(𝑙𝑛𝐴′)

𝜕𝑥′
) 

(5.74) 

 

5.3.2. Aplicação do método de diferenças finitas 

 

 Conforme exposto em Anderson (1995) a solução para o presente problema 

pode ser obtida a partir do uso do método de MacCormack para a solução de 

equações diferencias parciais de malhas fluídas. À rigor, este é provavelmente o 

método mais simples e de mais fácil implementação, entretanto leva a resultados 

bastante fidedignos. 

 Sua essência baseia-se na ideia do uso de passos de estimação dos 

parâmetros e correção dos mesmos ou seja, é, naturalmente, um predictor-corrector. 

Desta sua característica, alternando entre os passos de estimação e correção 

diferenças finitas progressivas e retrógradas, este captura o fenômeno com erros de 

2ª ordem. 

 

Figura 5.6 – Discretização linear do bocal convergente-divergente 
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 No caso em questão, buscou-se estimar as variações no instante (𝑡 + Δ𝑡) a 

partir dos valores calculados para o instante 𝑡 , tendo em vista o caráter quase-

unidimensional do fenômeno em análise. Para a estimativa dos valores da variação 

temporal das propriedades enunciadas pelas equações (5.72) a (5.74) no instante 𝑡 

para o i-ésimo nó da malha, utilizaram-se diferenças finitas progressivas em todos os 

nós a exceção do último, tendo em vista que não há elementos além deste, 

necessitando, pois, valer-se de diferença retrógrada. Para a etapa de estimação: 

 

(
𝜕𝜌′

𝜕𝑡′
)
𝑖

𝑡

= −𝜌′
𝑖
𝑡 𝑉

′
𝑖+1
𝑡
− 𝑉′𝑖

𝑡

Δ𝑥′
− 𝜌′

𝑖
𝑡
𝑉′𝑖
𝑡 ln (𝐴

′
𝑖+1
𝑡
) − ln (𝐴′𝑖

𝑡)

Δ𝑥′
− 𝑉′𝑖

𝑡
𝜌′
𝑖+1
𝑡
− 𝜌𝑖

𝑡

Δ𝑥′
 

(5.75) 

(
𝜕𝑉′

𝜕𝑡′
)
𝑖

𝑡

= −𝑉′𝑖
𝑡 𝑉

′
𝑖+1
𝑡
− 𝑉′𝑖

𝑡

Δ𝑥′
−
1

𝑘
(
𝑇′𝑖+1
𝑡

− 𝑇′𝑖
𝑡

Δ𝑥′
+
𝑇′𝑖
𝑡

𝜌′
𝑖
𝑡

𝜌′
𝑖+1
𝑡

− 𝜌′
𝑖
𝑡

Δ𝑥′
) 

(5.76) 

(
𝜕𝑇′

𝜕𝑡′
)
𝑖

𝑡

= −𝑉′𝑖
𝑡 𝑇

′
𝑖+1
𝑡

− 𝑇′𝑖
𝑡

Δ𝑥′
− (1 − 𝑘)𝑇′𝑖

𝑡 (
𝑉′𝑖+1
𝑡

− 𝑉′𝑖
𝑡

Δ𝑥′
+ 𝑉′𝑖

𝑡 ln (𝐴
′
𝑖+1
𝑡
) − ln (𝐴′′𝑖

𝑡)

Δ𝑥′
) 

(5.77) 

 

Com estas é possível estimar o valor das propriedades adimensionalizadas no 

instante 𝑡 + Δ𝑡. Estas, assim como em Anderson (1995) serão assinaladas com uma 

barra horizontal acima da varável: 

 

𝜌̅′𝑖
(𝑡+Δ𝑡)

= 𝜌′𝑖
𝑡 + (

𝜕𝜌′

𝜕𝑡′
)
𝑖

𝑡

Δ𝑡 
(5.78) 

𝑉̅′𝑖
(𝑡+Δ𝑡)

= 𝑉′𝑖
𝑡 + (

𝜕𝑉′

𝜕𝑡′
)
𝑖

𝑡

Δ𝑡 
(5.79) 

𝑇̅′𝑖
(𝑡+Δ𝑡)

= 𝑇′𝑖
𝑡 + (

𝜕𝑇′

𝜕𝑡′
)
𝑖

𝑡

Δ𝑡 
(5.80) 

 

Com estes valores estimados é possível obter uma estimativa para a variação 

das propriedades com o tempo no instante (𝑡 + Δ𝑡) . Agora, a fim de garantir a 

obtenção dos parâmetros com erros de 2ª ordem serão utilizadas diferenças 

retrógradas a excessão do nó inicial que não possui qualquer outra opção que não 
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seja diferença progressivo. Este fato somado a unicidade de diferenças retrógradas 

para o último nó fluído de fato acarretam em desvios numéricos em relação aos 

valores esperados. Em termos de propriedades nestes dois pontos, afirma-se que 

não haverá grande comprometimento tendo em vista que são fronteiras da malha 

fluída, locais este que serão ajustados segundo as condições de contorno 

adequadas. Os valores das taxas de variação temporais estimadas são dados pelas 

equações (5.81) a (5.82). 

 

(
𝜕𝜌̅′

𝜕𝑡′
)
𝑖

(𝑡+Δ𝑡)

= −𝜌̅′
𝑖

(𝑡+Δ𝑡) 𝑉̅
′
𝑖
(𝑡+Δ𝑡)

− 𝑉̅′𝑖−1
(𝑡+Δ𝑡)

Δ𝑥′
− 𝜌̅′

𝑖

(𝑡+Δ𝑡)
𝑉̅′𝑖
(𝑡+Δ𝑡) ln (𝐴

′
𝑖
(𝑡+Δ𝑡)

) − ln (𝐴′𝑖−1
(𝑡+Δ𝑡))

Δ𝑥′
+ 

−𝑉̅′𝑖
(𝑡+Δ𝑡) 𝜌̅

′
𝑖
(𝑡+Δ𝑡)

− 𝜌̅𝑖−1
(𝑡+Δ𝑡)

Δ𝑥′
 

(5.81) 

(
𝜕𝑉̅′

𝜕𝑡′
)
𝑖

(𝑡+Δ𝑡)

= −𝑉̅′𝑖
(𝑡+Δ𝑡) 𝑉̅

′
𝑖
(𝑡+Δ𝑡)

− 𝑉̅′𝑖−1
(𝑡+Δ𝑡)

Δ𝑥′
+ 

−
1

𝑘
(
𝑇̅′𝑖
(𝑡+Δ𝑡)

− 𝑇̅′𝑖−1
(𝑡+Δ𝑡)

Δ𝑥′
+
𝑇̅′𝑖
(𝑡+Δ𝑡)

𝜌̅′
𝑖
(𝑡+Δ𝑡)

𝜌̅′
𝑖
(𝑡+Δ𝑡)

− 𝜌̅𝑖−1
(𝑡+Δ𝑡)

Δ𝑥′
) 

(5.82) 

(
𝜕𝑇̅′

𝜕𝑡′
)
𝑖

(𝑡+Δ𝑡)

= −𝑉̅′𝑖
(𝑡+Δ𝑡) 𝑇̅

′
𝑖
(𝑡+Δ𝑡)

− 𝑇̅′𝑖−1
(𝑡+Δ𝑡)

Δ𝑥′

− (1 − 𝑘)𝑇̅′𝑖
(𝑡+Δ𝑡)

(
𝑉̅′𝑖
(𝑡+Δ𝑡)

− 𝑉̅′𝑖−1
(𝑡+Δ𝑡)

Δ𝑥′
+ 𝑉̅′𝑖

(𝑡+Δ𝑡) ln (𝐴
′
𝑖
(𝑡+Δ𝑡)

) − ln (𝐴′𝑖−1
(𝑡+Δ𝑡))

Δ𝑥′
) 

(5.83) 

 

Com estas derivadas temporais e de posse das equações (5.75) a (5.77), 

toma-se a média das taxas de variação temporal das propriedades a fim de se obter 

uma taxa de variação temporal média das propriedades, esta sim usada na correção 

do valor da propriedade no i-ésimo ponto para o instante 𝑡 + Δ𝑡. 

 

(
𝜕𝜌′

𝜕𝑡′
)

̅̅ ̅̅ ̅̅ ̅̅
=
1

2
[(
𝜕𝜌′

𝜕𝑡′
)
𝑖

𝑡

+ (
𝜕𝜌̅′

𝜕𝑡′
)
𝑖

𝑡+Δ𝑡

] 
(5.84) 

(
𝜕𝑉′

𝜕𝑡′
)

̅̅ ̅̅ ̅̅ ̅̅
=
1

2
[(
𝜕𝑉′

𝜕𝑡′
)
𝑖

𝑡

+ (
𝜕𝑉̅′

𝜕𝑡′
)
𝑖

𝑡+Δ𝑡

] 
(5.85) 

(
𝜕𝑇′

𝜕𝑡′
)

̅̅ ̅̅ ̅̅ ̅̅
=
1

2
[(
𝜕𝑇′

𝜕𝑡′
)
𝑖

𝑡

+ (
𝜕𝑇̅′

𝜕𝑡′
)
𝑖

𝑡+Δ𝑡

] 
(5.86) 
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E assim, finalmente tem-se as propriedades adimensionalizadas no instante (𝑡 + Δ𝑡): 

 

𝜌′𝑖
(𝑡+Δ𝑡)

= 𝜌′𝑖
𝑡 + (

𝜕𝜌′

𝜕𝑡′
)

̅̅ ̅̅ ̅̅ ̅̅
Δ𝑡 

(5.87) 

𝑉′𝑖
(𝑡+Δ𝑡)

= 𝑉′𝑖
𝑡 + (

𝜕𝑉′

𝜕𝑡′
)

̅̅ ̅̅ ̅̅ ̅̅
Δ𝑡 

(5.88) 

𝑇′𝑖
(𝑡+Δ𝑡)

= 𝑇′𝑖
𝑡 + (

𝜕𝑇′

𝜕𝑡′
)

̅̅ ̅̅ ̅̅ ̅̅
Δ𝑡 

(5.89) 

 

 A condição de parada adotada para a confecção de um código para 

simulação computacional foi o instante no qual a diferença em módulo entre os 

instantes atual e anterior de todas as propriedades em todos os pontos da malha 

fosse tão pequena quanto se queira. 

|𝑉′𝑖
𝑡+Δ𝑡

− 𝑉′𝑖
𝑡
| < 𝛿 

|𝜌′𝑖
𝑡+Δ𝑡 − 𝜌′𝑖

𝑡| < 𝛿 

|𝜌′𝑖
𝑡+Δ𝑡 − 𝜌′𝑖

𝑡| < 𝛿 

Ainda antes da implementação computacional do método para a solução do 

escoamento é necessário apresentar condições de contorno e iniciais a serem 

impostas para que haja satisfação da condição física em análise. Iniciar-se-á as 

discussões pelas condições iniciais. Anderson (1995) deixa bem claro que quaisquer 

as condições impostas inicialmente haverá convergência do programa, entretanto, 

como se deseja chegar ao regime permanente, quanto melhor a estimativa das 

condições iniciais para este menor o recurso computacional e tempo para a solução. 

Ainda há questão das grandes variações no transiente que podem acarretar em 

erros numéricos a serem propagados. A experiência obtida pelo autor do relatório na 

simulação de seu caso em estudo mostra que, na verdade, a possibilidade de 

estimativas erradas numéricas são grandes quando não há reflexão acerca das 

condições de contorno. Isto ficou claro em uma simulação de outra geometria de 

bocal com as mesmas condições de início impostas no caso apresentado por 

Anderson (1995). Para este a densidade adimensional calculada ficou negativa 
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induzindo na divergência da solução a partir de valores não adequados, ou melhor, 

valores que não estão na reta real, mas sim no plano complexo.  

Uma metodologia adequada para estimação dos parâmetros consiste em 

cálculos simples obtidos a partir da teoria mais básica de escoamento compressível. 

Notou-se que é adequado aproximar as propriedades densidade e temperatura com 

uma função linear decrescente desde a face de admissão até a de descarga, 

calculando o valor nesta última a partir do número de Mach de projeto: 

𝑇𝑖𝑛𝑖
′ = 1 −

𝑇𝑐

(1 +
𝑘 − 1
2 𝑀𝑠𝑎í𝑑𝑎

2 )

𝑇𝑐
𝑥 

E,  

𝜌𝑖𝑛𝑖
′ = 1 −

𝑝𝑐

(1 +
𝑘 − 1
2 𝑀𝑠𝑎í𝑑𝑎

2 )

𝑘
𝑘−1

.
(1 +

𝑘 − 1
2 𝑀𝑠𝑎í𝑑𝑎

2 )

𝑅𝑇𝑐

𝑝𝑐/𝑅𝑇𝑐
𝑥 

Já a velocidade adimensional pode ser estimada da mesma maneira, mas a partir da 

velocidade na seção de descarga do bocal: 

𝑉𝑖𝑛𝑖
′ = 1 −

𝑀𝑠𝑎í𝑑𝑎√𝑘𝑅
𝑇𝑐

(1 +
𝑘 − 1
2 𝑀𝑠𝑎í𝑑𝑎

2 )

√𝑘𝑅𝑇𝑐
𝑥 

 Anderson (1995) também traz uma abordagem muito interessante no que toca 

as condições de contorno a partir da utilização de conceitos do método das 

características, já abordado na seção 4.2. Conforme já apresentado, as linhas 

características nada mais são do que ondas de Mach de pequena magnitude que se 

propagam com velocidade sônica local, deslocando-se sempre a montante e a 

jusante do escoamento. Conforme já visto há sempre um par destas, uma que se 

move à direita e outra à esquerda. A figura 5.7 ilustra a situação a ser analisada. 
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Figura 5.7 – Entrada e saída do bocal 

 

 Como a velocidade da característica é maior do que aquela local do 

escoamento na seção de admissão, isto porque nesta a velocidade é extremamente 

baixa, tem-se que a característica esquerda sai do domínio fluído em análise 

adentrando ao reservatório, no caso, câmara de combustão. Já a característica que 

segue a direita nesta seção adentra ao domínio analisado. Algo diferente acontece 

na seção de descarga. Nesta, ambas as linhas caraterísticas se deslocam com 

velocidade menor do que aquela atingida na seção. Ora, isto é óbvio de se notar já 

que o projeto do bocal é feito para que a velocidade do escoamento local seja maior 

do que a velocidade sônica no loco. Com isto, dada a composição de movimentos 

dos vetores velocidade, ambas as características são “arrastadas” para fora do 

domínio fluído. 

 Segundo Anderson (1995), da teoria do método das características, se uma 

das linhas sai da domínio fluido, tem-se que há a necessidade de uma propriedade 

do ponto em que esta parte ser flutuante. Isto ocorre com ambas as linhas na seção 

de descarga, acarretando na necessidade de deixar todas as propriedades nesta 

variarem. Isto pode ser feito a partir da utilização de parâmetros obtidos em pontos 

adjacentes ou próximos no escoamento. Também nota-se que na seção de 

admissão somente uma das características deixa o domínio fluído, desta forma 
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somente uma propriedade, no caso adotado a velocidade adimensional, irã variar, 

sendo a densidade e temperaturas, por facilidade, definidas. 

 A variação das propriedades pode ser feita de maneira linear levando em 

conta os nós mais próximos subsequentes (seção de admissão) ou anteriores 

(seção de descarga). Para o caso da velocidade, por exemplo, estipula-se, por 

hipótese que haverá aumento linear desta entre os nós (i-2), (i-1) e i. Como não se 

sabe ao certo o valor da velocidade em i, mas sim os de (i-2) e (i-1) bem como a 

distância entre estes, uma estimativa do coeficiente angular da reta pode ser obtida: 

𝛼 =
𝑉′𝑖−1
𝑡 − 𝑉′𝑖−2

𝑡  

Δ𝑥′
 

Da hipótese de que o ponto i está sobre a mesma reta, tem-se que, para uma 

distância Δ𝑥′ entre os pontos (i-1) e (i): 

𝑉𝑖
′𝑡 = 𝑉′𝑖−1

𝑡 +
𝑉′𝑖−1
𝑡 − 𝑉′𝑖−2

𝑡  

Δ𝑥′
Δ𝑥′ ⟹ 𝑉′𝑖

𝑡
= 2𝑉′𝑖−1

𝑡 − 𝑉′𝑖−2
𝑡  

O mesmo vale para as demais propriedades na seção de descarga. 

Analogamente, para a velocidade na seção de entrada: 

𝑉′1
𝑡
= 2𝑉′2

𝑡 − 𝑉′3
𝑡  

 A tabela 5.1 lista todas as condições de contornos utilizadas na confecção do 

programa de simulação computacional. 

 

Tabela 5.1 – Condições de contorno para análise quase-unidimensional de um bocal convergente-

divergente supersônico 

Seção Propriedade Condição de contorno 

 

Entrada 

𝑇′ 1 

𝑉′ 𝑉′1
𝑡
= 2𝑉′2

𝑡 − 𝑉′3
𝑡  

𝜌′ 1 

 

Saída 

‘ 

𝑇′ 𝑇′𝑖
𝑡
= 2𝑇′𝑖−1

𝑡 − 𝑇′𝑖−2
𝑡  

𝑉′ 𝑉′𝑖
𝑡
= 2𝑉′𝑖−1

𝑡 − 𝑉′𝑖−2
𝑡  

𝜌′ 𝜌′
𝑖
𝑡
= 2𝜌′𝑖−1

𝑡 − 𝜌′𝑖−2
𝑡  
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 Na entrada, a temperatura e densidade adimensionais tem como condição d 

contorno 1 pois são adimensionalizadas segundo os parâmetros da câmara de 

combustão, isto é, a temperatura é idêntica a temperatura da câmara bem como a 

pressão.  

Resta para finalizar a apresentação da metodologia para a avaliação de um 

bocal quase-unidimensional supersônico verificar quando devem ser impostas as 

condições de contorno. Após testes realizados no código apresentado no apêndice 

A, verificou-se que, além de impor tais condições para a situação inicial, também é 

necessário impô-las a cada um dos passos de temperatura, tanto para as 

propriedades adimensionalizadas falsas, como também para as verdadeiras obtidas 

ao final. Caso não aplicadas na etapa de estimação das propriedades “falsas”, 

verificaram-se discrepâncias numéricas acentuadas na comparação do caso 

resolvido por Anderson (1995). 

 O último ponto a ser citado é a escolha do intervalo de tempo de cada 

iteração. Anderson (1995), atesta que, por questões de estabilidade para o caso em 

questão, o valor do passo temporal deve obedecer: 

 

Δ𝑡′𝑖
𝑡 = 𝐶

Δ𝑥′

𝑐′ + 𝑉′
⟹ Δ𝑡′𝑖

𝑡
= 𝐶

Δ𝑥′

√
𝑘𝑅𝑇
𝑘𝑅𝑇𝑐

+ 𝑉′
⟹ Δ𝑡′𝑖

𝑡
= 𝐶

Δ𝑥′

√𝑇′ + 𝑉′
 

(5.90) 

 

Devendo ser escolhido o menor dentre todos os calculados para cada ponto. O valor 

𝐶 apresentado se trata do número de Courant tendo seu valor no domínio 𝐼 ∈ ℝ/ 𝐼 =

]0,1]. Fisicamente, a escolha do menor Δ𝑡𝑖 significa tomar o menor tempo no qual 

uma onda de perturbação pode avançar de de um ponto para o outro do 

escoamento, daí a necessidade de se tomar o menor valor a fim de capturar todo o 

fenômeno no domínio em análise. 
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5.4. APLICAÇÃO DA SOLUÇÃO DO BOCAL QUASE-UNIDIMENSIONAL AO 

PROBLEMA DE ESVAZIAMENTO DA CÂMARA DE COMBUSTÃO 

 

 Para esta determinação, novamente será utilizada a equação diferencial já 

deduzida na seção 5.1, que calcula variação temporal da pressão no interior da 

câmara de combustão a partir do volume livre desta (variável com a queima do 

combustível), temperatura interna, propriedades do gás resultante do processo e 

número de Mach na garganta, para o caso blocado desejado a fim de maximizar a 

vazão mássica, 𝑀2 = 1. 

𝑑𝑝𝑐
𝑑𝑡

=
𝑅𝑇𝑐
𝑉𝑙𝑖𝑣𝑟𝑒

[
 
 
 
 
 

𝑎𝐴𝑞𝑢𝑒𝑖𝑚𝑎 (𝜌𝑐𝑜𝑚𝑏 −
𝑝
𝑐

𝑅𝑇𝑐
)𝑝𝑐

𝑛 − 𝑝
𝑐
𝑀2𝐴2

√ 𝑘

𝑅𝑇𝑐
(

1

1 +
𝑘 − 1
2

𝑀2
2
)

𝑘+1
𝑘−1

]
 
 
 
 
 

 

 

(5.91) 

 

 Considerando um propelente sólido de geometria cilíndrica o qual queima 

com área constante igual a sua seção transversal ao longo de seu comprimento, e 

denotando seu comprimento por 𝐿𝑐 e diâmetro 𝐷𝑐, tem-se seu valor inicial dado por: 

 

𝑉𝑞(𝑡 = 0) = 𝜋
𝐷𝑐
2

4
𝐿𝑐 

(5.92) 

 

Como sua queima depende da pressão da câmara de combustão, no instante 𝑡 + Δ𝑡 

genérico tem-sem que o volume de combustível é: 

𝑉𝑞(𝑡 + Δ𝑡) = 𝑉𝑞(𝑡) − [(𝑎𝑝𝑐
𝑛)⏟  

𝑟̇

(𝜋
𝐷𝑐
2

4
)]Δ𝑡 

(5.93) 

 

Assim, o volume livre da câmara é dado pelo volume morto (volume inicial no qual 

não há combustível sólido) somado ao total de volume de combustível queimado: 
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𝑉𝑙𝑖𝑣𝑟𝑒(𝑡) = 𝑉𝑙𝑖𝑣𝑟𝑒(0) + 𝑉𝑞(𝑡) (5.94) 

 

5.4.1. Implementação computacional 

 

 A fim de introduzir esta dinâmica a simulação do bocal quase-unidimensional, 

nota-se que a pressão no interior da câmara de combustão já não mais será 

constante, desta forma, a cada passo de tempo ela será alterada. O equivalente a 

isto é dizer que a pressão na seção de admissão do bocal será alterada a cada 

passo de tempo segundo a equação diferencial que rege o fenômeno. O 

procedimento para este cálculo é descrito em sequência. 

1. Obtenção dos parâmetros físicos 𝑇, 𝜌 para o cálculo da pressão da câmara 

com dimensão física; 

𝑇𝑐 = 𝑇1
′𝑡(𝑇𝑐) (5.95) 

𝜌𝑐 = 𝜌1
′ 𝑡(𝜌𝑐) (5.96) 

𝑝𝑐
𝑡 = 𝜌𝑐𝑅𝑇𝑐 (5.97) 

 

2.  Para uma variação Δ𝑡  de tempo, calcular o novo volume da câmara de 

combustão 

𝑉𝑙𝑖𝑣𝑟𝑒(𝑡 + Δ𝑡) = 𝑉𝑙𝑖𝑣𝑟𝑒(0) + {𝑉𝑞(𝑡) − [(𝑎𝑝𝑐
𝑛)⏟  

𝑟̇

(𝜋
𝐷𝑐
2

4
)]Δ𝑡} 

(5.98) 

 

 

3. Verificar se o bocal está ou não blocado a partir da comparação entre a 

pressão da câmara de combustão e do receptor: 

𝑝𝑔𝑎𝑟𝑔𝑎𝑛𝑡𝑎
𝑡

𝑝𝑐
𝑡 ≥ (1 +

𝑘 − 1

2
)

−𝑘
𝑘−1

 

(5.99) 

 

4. Com a verificação se o bocal está ou não blocado, aplicar adequadamente a 

equação que diz respeito a taxa de variação da pressão na câmara de 

combustão com o tempo. Esta também possui duas possibilidades: uma no 

caso em que ainda há combustível sólido no interior da câmara, e outra na 
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qual não. Na última situação não há geração de gases oriundos do processo 

de combustão, havendo somente o esvaziamento do componente até que a 

pressão interna se iguale a externa. 

 

a) caso COM combustível no interior da câmara 

𝑑𝑝𝑐
𝑑𝑡

=
𝑅𝑇𝑐
𝑉𝑙𝑖𝑣𝑟𝑒

[
 
 
 
 
 

𝑎𝐴𝑞𝑢𝑒𝑖𝑚𝑎(𝜌𝑐𝑜𝑚𝑏 − 𝜌𝑔á𝑠)𝑝𝑐
𝑛 − 𝑝𝑐𝑀2𝐴2

√ 𝑘

𝑅𝑇𝑐
(

1

1 +
𝑘 − 1
2

𝑀2
2
)

𝑘+1
𝑘−1

]
 
 
 
 
 

 

(5.100) 

 

b) caso SEM combustível no interior da câmara 

 

𝑑𝑝𝑐
𝑑𝑡

=
𝑅𝑇𝑐
𝑉𝑙𝑖𝑣𝑟𝑒

[
 
 
 
 
 

−𝑎𝐴𝑞𝑢𝑒𝑖𝑚𝑎 (𝜌𝑔á𝑠)𝑝𝑐
𝑛 − 𝑝

𝑐
𝑀2𝐴2

√ 𝑘

𝑅𝑇𝑐
(

1

1 +
𝑘 − 1
2

𝑀2
2
)

𝑘+1
𝑘−1

]
 
 
 
 
 

 

(5.101) 

 

5. A nova pressão na câmara de combustão é dada por: 

 

𝑝𝑐
𝑡+Δ𝑡 = 𝑝𝑐

𝑡 + (
𝑑𝑝𝑐
𝑑𝑡
)
𝑡
Δ𝑡  

(5.102) 

 

 

5.4.2. Determinação do perfil 

 

 A fim de aplicar o modelo quase-unidimensional para o fim proposto, se faz 

necessário determinar o perfil do bocal desejado a fim de gerar a função que 

descreve a área do mesmo. Com este escopo selecionou-se um número de Mach na 

saída (2,5) e um raio de garganta (0,02 m) a fim de gerar a geometria externa da 

seção divergente. O resultado para 50 características está ilustrado na figura 5.8. 
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Figura 5.8 – Geometria do bocal divergente calculada 

 

 A partir dos pontos gerados pelo método das características fez-se 3 

interpolações de polinômios de diferentes graus tais como apresentadas pelas 

figuras 5.9 a 5.11 a fim de verificar qual possui maior aderência. Este será utilizado 

como função para determinação da variação de área no algoritmo para o cômputo 

da variação da pressão na câmara de combustão. 

 

 

Figura 5.9 – Interpolação de polinômio de 2º grau 
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Figura 5.10 – Interpolação de polinômio de 3º grau 

 

 

Figura 5.11 – Interpolação de polinômio de 4º grau 

 

 Fica claro da análise dos gráficos que os polinômios de 3º e 4º grau seguem 

de maneira mais fiel o perfil gerado. A maior diferença entre ambos está na porção 

da garganta, na qual o polinômio de maior grau apresenta cota mais próxima 

daquela especificada (0,0191 m). Do exposto selecionou-se esta função para 

determinação do raio do bocal, sendo os coeficientes dados por: 
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𝑟(𝑥) = 1,2487(𝑥 − 𝑥0) 
4 + 1,7049(𝑥 − 𝑥0)

3 − 1,8288(𝑥 − 𝑥0)
2 + 0,5526(𝑥 − 𝑥0) + 0,0192 (5.104) 

 

 O perfil convergente, apenas para verificação será aproximado por uma 

função exponencial decrescente de forma que a garganta fique na posição de 3 cm 

ao longo do eixo longitudinal. O perfil proposto está ilustrado na figura 5.12. Nota-se 

que o perfil interno não é aerodinâmico, o que possui implicações no escoamento 

induzindo regiões com queda de pressão a jusante. Isto será negligenciado no 

presente momento dada a avaliação isentrópica adotada, sem levar em 

consideração perdas de qualquer natureza. Naturalmente na situação este deve ser 

corrigido. 

 

Figura 5.12 – Perfil proposto para avaliação do problema de esvaziamento da câmara de combustão 

 

5.5. MODELO DINÂMICO 

 

5.5.1. Obtenção do modelo dinâmico não-linear 

 

 Para obtenção do modelo dinâmico de um míssil, utilizou-se mecânica vetorial 

através do Teorema do Movimento do Baricentro (TMB) e do Teorema do Momento 
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Angular (TMA), de modo similar aqueles apresentados por Jenkins (1984) e Özkan 

(2005). 

 

∑𝐹⃗𝑒𝑥𝑡 = 𝑚𝑎⃗𝑐𝑔 (5.105) 

∑𝑀⃗⃗⃗𝑒𝑥𝑡 =
𝑑𝐻⃗⃗⃗

𝑑𝑡
 

(5.106) 

 

 

 

Figura 5.13 – Modelo físico do míssil 

 

A figura 5.13 ilustra o modelo físico do corpo em movimento bem como os sistemas 

de coordenadas selecionados para a obtenção da equações de movimento. O 

sistema inercial foi escolhido como algum ponto localizado na superfície do globo 

terrestre supondo este fixo em relação ao espaço, isto é, desprezou-se qualquer 

efeito da rotação da Terra, justificando-se esta escolha dado a distância a qual se 

propõe que o míssil se desloque na missão. Naturalmente que se o mesmo se 

tratasse de um míssil balístico de longo alcance, este efeito da rotação do globo 

terrestre seria importante, não podendo ser negligenciado. 
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 Nota-se, ainda da figura 5.13 a escolha por alocar um sistema de referência 

solidário ao corpo com o eixo 𝑂′𝑥𝑐 na direção do nariz do míssil passando pelo seu 

centro de massa e os demais também passando por este ponto e perpendiculares 

ao 𝑂′𝑥𝑐  convencionando uma base ortonormal positiva. A fim de representar este 

sistema de coordenadas solidário ao corpo em relação ao sistema de coordenadas 

inercial foram utilizados os ângulos de Euler (Etkin, 1972) com sequência exata de 

rotações dada por: 

 Rotação de 𝜓 ao redor do eixo 𝑂𝑧 (arfagem); 

 Rotação de 𝜃 ao redor do eixo 𝑂𝑦′(guinada); 

 Rotação de 𝜙 ao redor do eixo 𝑂𝑥′′ (rolagem). 

A figura 5.14 ilustra a sequência de rotações proposta. Destas, pode-se escrever 

as matrizes de transformação de base para cada uma das rotações. 

 

 

Figura 5.14 – Convenção para as rotações do sistema fixo ao corpo em relação ao inercial 

segundo os ângulos de Euler 

 

{𝑥⃗} = [
𝑐𝑜𝑠𝜓 −𝑠𝑒𝑛𝜓 0
𝑠𝑒𝑛𝜓 𝑐𝑜𝑠𝜓 0
0 0 1

]
⏟            

[𝑇]0→1

{𝑥⃗′} 
(5.107) 

{𝑥⃗′} = [
𝑐𝑜𝑠𝜃 0 −𝑠𝑒𝑛𝜃
0 1 0

𝑠𝑒𝑛𝜃 0 𝑐𝑜𝑠𝜃
]

⏟            
[𝑇]1→2

{𝑥⃗′′} 
(5.108) 

{𝑥⃗′′} = [
1 0 0
0 𝑐𝑜𝑠𝜙 −𝑠𝑒𝑛𝜙
0 𝑠𝑒𝑛𝜙 cos 𝜙

]
⏟            

[𝑇]2→𝑐

{𝑥⃗𝑐} 
(5.109) 
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Todas as matrizes de transformação de base ([𝑇]0→1 , [𝑇]1→2  e [𝑇]2→𝑐 ) são 

ortogonais, isto é: 

𝐴𝑡 = 𝐴−1 

Desta forma as transformações inversas são dadas por: 

{𝑥⃗′} = [
𝑐𝑜𝑠𝜓 𝑠𝑒𝑛𝜓 0
−𝑠𝑒𝑛𝜓 𝑐𝑜𝑠𝜓 0
0 0 1

]
⏟            

[𝑇]1→0

{𝑥⃗} 
(5.110) 

{𝑥⃗′′} = [
𝑐𝑜𝑠𝜃 0 𝑠𝑒𝑛𝜃
0 1 0

−𝑠𝑒𝑛𝜃 0 𝑐𝑜𝑠𝜃
]

⏟            
[𝑇]2→1

{𝑥⃗′} 
(5.111) 

{𝑥⃗𝑐} = [
1 0 0
0 𝑐𝑜𝑠𝜙 𝑠𝑒𝑛𝜙
0 −𝑠𝑒𝑛𝜙 cos 𝜙

]
⏟            

[𝑇]𝑐→2

{𝑥⃗′′} 
(5.112) 

 

 Com estas equações é possível escrever a velocidade angular do centro de 

massa do míssil em relação ao ponto O do sistema de referência inercial no sistema 

de coordenadas solidário ao míssil. Seja a velocidade angular em relação ao 

referencial inercial: 

𝜔⃗⃗⃗𝑐/𝑂 = 𝜓̇𝑘⃗⃗ + 𝜃̇𝑗′⃗⃗⃗ + 𝜙̇𝑖′′⃗⃗⃗⃗  (5.113) 

 

Mas, das matrizes de transformação de base, reescrevendo todos os versores de 

(5.113) em relação ao sistema de coordenadas solidário ao corpo: 

{

𝑖′′⃗⃗⃗⃗ = 𝑖𝑐

𝑗′⃗⃗⃗ = 𝑗′′⃗⃗⃗⃗ = 𝑐𝑜𝑠𝜙𝑗𝑐⃗⃗⃗ − 𝑠𝑒𝑛𝜙𝑘𝑐⃗⃗⃗⃗⃗

𝑘⃗⃗ = 𝑘′⃗⃗⃗⃗ = 𝑠𝑒𝑛𝜃𝑖𝑐⃗⃗⃗ + 𝑐𝑜𝑠𝜃(𝑠𝑒𝑛𝜙𝑗𝑐⃗⃗⃗ + 𝑐𝑜𝑠𝜙𝑘𝑐⃗⃗⃗⃗⃗)

 

Logo: 

𝜔⃗⃗⃗𝑐𝑐/𝑂 = [𝜙̇ + 𝜓̇𝑠𝑒𝑛𝜃 𝜃̇𝑐𝑜𝑠𝜙 + 𝜓̇𝑐𝑜𝑠𝜃𝑠𝑒𝑛𝜙 𝜓̇𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 − 𝜃̇𝑐𝑜𝑠𝜙] {

𝑖𝑐⃗⃗⃗

𝑗𝑐⃗⃗⃗

𝑘𝑐⃗⃗⃗⃗⃗
} 

(5.114) 
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Portanto, segundo a notação usual em dinâmica de aeronaves (Etkin, 1972), as 

componentes da velocidade angular podem ser escritas segundo: 

𝑝 = 𝜙̇ + 𝜓̇𝑠𝑒𝑛𝜃 (5.115) 

𝑞 = 𝜃̇𝑐𝑜𝑠𝜙 + 𝜓̇𝑐𝑜𝑠𝜃𝑠𝑒𝑛𝜙 (5.116) 

𝑟 = 𝜓̇𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 − 𝜃̇𝑐𝑜𝑠𝜙 (5.117) 

 

Resolvendo o sistema linear formado pelas equações (5.115) a (5.117) 

obtém-se as componentes de variação temporal dos ângulos de Euler em função 

das velocidades angulares do corpo: 

𝜓̇ =
𝑞𝑠𝑒𝑛𝜙 + 𝑟𝑐𝑜𝑠𝜃

𝑐𝑜𝑠𝜃
 

(5.118) 

𝜃̇ = 𝑞𝑐𝑜𝑠𝜙 − 𝑟𝑠𝑒𝑛𝜙 (5.119) 

𝜙̇ = 𝑝 − (𝑞𝑠𝑒𝑛𝜙 + 𝑟𝑐𝑜𝑠𝜙)𝑡𝑔𝜃 (5.120) 

 

Vale ressaltar que há uma limitação de guinada dado que, dá equação (5.118), 𝜃 

deve ser diferente de 90º caso contrário o que se tem é uma indeterminação. 

 De posse das velocidades angulares escritas segundo o sistema de 

coordenadas do corpo, fica fácil determinar o momento angular no míssil. A escolha 

deste sistema de coordenadas traz consigo uma facilidade ímpar no tratamento 

deste termo: a matriz de inércia é constante a qualquer instante de tempo isto 

porque a referência de cálculo para esta é sempre a mesma, independendo da 

posição do corpo tal como seria caso a avaliação da quantidade de movimento 

angular fosse realizada no referencial fixo na Terra. A equação da quantidade de 

movimento angular é dada por: 

𝐻⃗⃗⃗ = 𝑚(𝑃 − 𝑂)𝑥𝑣⃗𝑜 + {𝑖𝑐⃗⃗⃗ 𝑗𝑐⃗⃗⃗ 𝑘𝑐⃗⃗⃗⃗⃗} [

𝐽𝑥 𝐽𝑥𝑦 𝐽𝑥𝑧
𝐽𝑦𝑥 𝐽𝑦 𝐽𝑦𝑧
𝐽𝑧𝑥 𝐽𝑧𝑦 𝐽𝑧

] {
𝑝
𝑞
𝑟
} 

(5.121) 
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Como o corpo está sendo avaliado no seu centro de massa, (𝑃 − 𝑂) = 0⃗⃗, desta 

forma: 

𝐻⃗⃗⃗ = {𝑖𝑐⃗⃗⃗ 𝑗𝑐⃗⃗⃗ 𝑘𝑐⃗⃗⃗⃗⃗} [

𝐽𝑥 𝐽𝑥𝑦 𝐽𝑥𝑧
𝐽𝑦𝑥 𝐽𝑦 𝐽𝑦𝑧
𝐽𝑧𝑥 𝐽𝑧𝑦 𝐽𝑧

] {
𝑝
𝑞
𝑟
} 

(5.122) 

 

Derivando (5.122) em relação ao tempo: 

𝑑𝐻⃗⃗⃗

𝑑𝑡
= [
𝑑{𝑖𝑐⃗⃗⃗ 𝑗𝑐⃗⃗⃗ 𝑘𝑐⃗⃗⃗⃗⃗}

𝑑𝑡
] [

𝐽𝑥 𝐽𝑥𝑦 𝐽𝑥𝑧
𝐽𝑦𝑥 𝐽𝑦 𝐽𝑦𝑧
𝐽𝑧𝑥 𝐽𝑧𝑦 𝐽𝑧

] {
𝑝
𝑞
𝑟
} + {𝑖𝑐⃗⃗⃗ 𝑗𝑐⃗⃗⃗ 𝑘𝑐⃗⃗⃗⃗⃗} [

𝐽𝑥 𝐽𝑥𝑦 𝐽𝑥𝑧
𝐽𝑦𝑥 𝐽𝑦 𝐽𝑦𝑧
𝐽𝑧𝑥 𝐽𝑧𝑦 𝐽𝑧

]

𝑑 {
𝑝
𝑞
𝑟
}

𝑑𝑡
 

 

(5.123) 

 

Mas: 

𝑑𝑖𝑐⃗⃗⃗

𝑑𝑡
= (𝑝, 𝑞, 𝑟)𝑥𝑖𝑐⃗⃗⃗ = 𝑟𝑗𝑐⃗⃗⃗ − 𝑞𝑘𝑐⃗⃗⃗⃗⃗ 

𝑑𝑗𝑐⃗⃗⃗

𝑑𝑡
= (𝑝, 𝑞, 𝑟)𝑥𝑗𝑐⃗⃗⃗ = 𝑝𝑘𝑐⃗⃗⃗⃗⃗ − 𝑟𝑖𝑐⃗⃗⃗ 

𝑑𝑘𝑐⃗⃗⃗⃗⃗

𝑑𝑡
= (𝑝, 𝑞, 𝑟)𝑥𝑘𝑐⃗⃗⃗⃗⃗ = 𝑞𝑖𝑐⃗⃗⃗ − 𝑝𝑗𝑐⃗⃗⃗ 

 

Então, já reorganizando as equações segundo cada um dos versores e assumindo o 

míssil como um corpo de revolução simétrico segundo os planos 𝑂′𝑥𝑐𝑦𝑐  e 𝑂′𝑥𝑐𝑧𝑐 

com as superfícies de controle nestes planos, todos os produtos de inércia se 

tornam zero, restando somente os termos referentes aos momentos de inércia, 

obtém-se as equações referentes a variação da quantidade de movimento angular. 

𝑑𝐻⃗⃗⃗

𝑑𝑡
= [𝐽𝑥𝑝 + 𝑞𝑟(𝐽𝑧 − 𝐽𝑦) 𝐽𝑦𝑞 + 𝑝𝑟(𝐽𝑥 − 𝐽𝑧) 𝐽𝑧𝑟 + 𝑝𝑞(𝐽𝑦 − 𝐽𝑥)] {

𝑖𝑐⃗⃗⃗

𝑗𝑐⃗⃗⃗

𝑘𝑐⃗⃗⃗⃗⃗
} 

(5.124) 

 

Os momentos atuantes no míssil possuem basicamente três origens, uma 

relacionada às forças aerodinâmicas devido a imersão do corpo em movimento no 
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meio fluído (atmosfera) e o momento relacionado ao empuxo, eventualmente 

utilizado para fazer o controle vetorial através do movimento do conjunto de 

exaustão dos gases, além de um vetor de perturbação. Desta forma: 

𝑀⃗⃗⃗𝑎𝑒𝑟 + 𝑀⃗⃗⃗𝑝𝑟𝑜𝑝 + 𝑀⃗⃗⃗𝑝𝑒𝑟𝑡 = [𝐽𝑥𝑝 + 𝑞𝑟(𝐽𝑧 − 𝐽𝑦) 𝐽𝑦𝑞 + 𝑝𝑟(𝐽𝑥 − 𝐽𝑧) 𝐽𝑧𝑟 + 𝑝𝑞(𝐽𝑦 − 𝐽𝑥)] {

𝑖𝑐⃗⃗⃗

𝑗𝑐⃗⃗⃗

𝑘𝑐⃗⃗⃗⃗⃗
} 

(5.125) 

 

  Resta, agora, a avaliação do Teorema do Movimento do Baricentro para 

obtenção das componentes de aceleração do corpo. A Aceleração do corpo é dada, 

em termos absolutos, por: 

𝑎⃗ = 𝑎⃗𝑐 + 𝜔⃗⃗⃗𝑐/𝑂
𝑐 𝑥𝑣𝑐⃗⃗ ⃗⃗  (5.126) 

  

Mas, 𝑎⃗ é a própria aceleração do corpo no sistema de referência inercial, sendo, 

portanto igual a: 

𝑎⃗ =
∑𝐹⃗𝑒𝑥𝑡
𝑚

 

E o produto vetorial entre a velocidade angular e a velocidade do corpo, avaliadas 

no referencial fixo no corpo, é dado por: 

𝜔⃗⃗⃗𝑐/𝑂
𝑐 𝑥𝑣𝑐⃗⃗ ⃗⃗ = [

𝑖𝑐⃗⃗⃗ 𝑗
𝑐
⃗⃗⃗ 𝑘𝑐⃗⃗⃗⃗

𝑝 𝑞 𝑟
𝑢 𝑣 𝑤

] = [𝑞𝑤 − 𝑟𝑣 𝑟𝑢 − 𝑝𝑤 𝑝𝑣 − 𝑞𝑢]{

𝑖𝑐⃗⃗⃗

𝑗
𝑐
⃗⃗⃗

𝑘𝑐⃗⃗⃗⃗

} 

Assim, as acelerações tomadas no referencias do corpo são: 

{

𝑎𝑥
𝑎𝑦
𝑎𝑧
} =

{
 
 

 
 
𝐹𝑥
𝑚
− (𝑞𝑤 − 𝑟𝑣)

𝐹𝑦

𝑚
− (𝑟𝑢 − 𝑝𝑤)

𝐹𝑧
𝑚
− (𝑝𝑣 − 𝑞𝑢)}

 
 

 
 

 

 

 

(5.127) 

 

 As forças externas que agem no corpo podem ser divididas em quatro vetores 

distintos: aerodinâmicas, propulsão, de campo e de perturbação (por exemplo uma 
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rajada). Todas estas, a exceção daquela relacionada a algum campo, no caso o 

campo gravitacional, são mais facilmente expressas no sistema de coordenadas do 

corpo, uma das razões pela qual o modelo é avaliado neste sistema de referência. 

Desta forma, é necessário fazer a transformação de base com o escopo de avaliar a 

força peso no referencial solidário ao corpo. Seja a aceleração da gravidade 

orientada na direção z do sistema de coordenadas inercial em seu sentido negativo, 

assim: 

𝑃⃗⃗ = −𝑚𝑔𝑘⃗⃗ (5.128) 

 

Para esta mudança, deve-se escrever a equação (5.128) em termos dos versores do 

sistema de referência solidário ao corpo, de tal sorte que se tem: 

{𝑥⃗} = [𝑇]0→1[𝑇]1→2[𝑇]2→𝑐⏟            
[Τ]

{𝑥⃗𝑐} (5.129) 

 

Com  

[Τ] = [

𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜃 𝑠𝑒𝑛𝜓𝑐𝑜𝑠𝜃 𝑠𝑒𝑛𝜃
−𝑠𝑒𝑛𝜓𝑐𝑜𝑠𝜙 − 𝑠𝑒𝑛𝜃𝑠𝑒𝑛𝜙𝑐𝑜𝑠𝜓 𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜙 − 𝑠𝑒𝑛𝜙𝑠𝑒𝑛𝜓𝑠𝑒𝑛𝜃 𝑐𝑜𝑠𝜃𝑠𝑒𝑛𝜙
𝑠𝑒𝑛𝜓𝑠𝑒𝑛𝜙 − 𝑐𝑜𝑠𝜙𝑠𝑒𝑛𝜃𝑐𝑜𝑠𝜓 −𝑠𝑒𝑛𝜙𝑐𝑜𝑠𝜓 − 𝑠𝑒𝑛𝜓𝑠𝑒𝑛𝜃𝑐𝑜𝑠𝜙 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙

] 

Logo: 

𝑃𝑐⃗⃗⃗⃗⃗ = −𝑚𝑔[𝑠𝑒𝑛𝜃 𝑐𝑜𝑠𝜃𝑠𝑒𝑛𝜙 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙]{

𝑖𝑐⃗⃗⃗

𝑗
𝑐
⃗⃗⃗

𝑘𝑐⃗⃗⃗⃗

} 

 

(5.130) 

 

 Em suma, as equações para a aceleração obtidas a partir da 2ª Lei de 

Newton são dadas por: 

{

𝑎𝑥
𝑎𝑦
𝑎𝑧
} =

{
  
 

  
 
𝐹𝑎𝑒𝑟𝑥
𝑐 + 𝐹𝑝𝑟𝑜𝑝𝑥

𝑐 + 𝑃𝑥
𝑐 + 𝐹𝑝𝑒𝑟𝑡𝑥

𝑐

𝑚
− (𝑞𝑤 − 𝑟𝑣)

𝐹𝑎𝑒𝑟𝑦
𝑐 + 𝐹𝑝𝑟𝑜𝑝𝑦

𝑐 + 𝑃𝑦
𝑐 + 𝐹𝑝𝑒𝑟𝑡𝑦

𝑐

𝑚
− (𝑟𝑢 − 𝑝𝑤)

𝐹𝑎𝑒𝑟𝑧
𝑐 + 𝐹𝑝𝑟𝑜𝑝𝑧

𝑐 + 𝑃𝑧
𝑐 + 𝐹𝑝𝑒𝑟𝑡𝑧

𝑐

𝑚
− (𝑝𝑣 − 𝑞𝑢) }

  
 

  
 

 

 

 

(5.131) 
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 Agora se faz necessário, finalmente, avaliar os momentos e as forças 

atuantes no míssil exceto pela força peso que já fora abordada. Como o escopo do 

modelo dinâmico é fornecer meios para o projeto de um sistema de controle para o 

míssil e este, segundo Özkan (2005) só se inicia após a fase de boost, tais forças 

não estão atuando no modelo a ser descrito e também a massa do objeto é 

constante, facilitando o projeto do controlador. Assim, a simplificação é dada por: 

 

𝑀⃗⃗⃗𝑝𝑟𝑜𝑝
𝑐 = 0 𝑁𝑚 𝑒 𝐹⃗𝑝𝑟𝑜𝑝

𝑐 = 0 𝑁 

 

 As forças aerodinâmicas são dadas conforme usualmente demonstrado em 

livros sobre o assunto, tal como Anderson (1991), ou seja, variando com o quadrado 

da distância da velocidade do escoamento ao longe, no caso a própria velocidade do 

míssil, seno proporcional a um coeficiente, seja ele de arrasto ou sustentação. Para 

o problema proposto as forças aerodinâmicas serão tomadas uma em cada direção 

do sistema de referência solidário ao corpo, sendo elas dadas por: 

𝐹𝑎𝑒𝑟
𝑐
𝑥
=
1

2
𝐶𝑥𝜌𝑎𝑟 (𝑢

2 + 𝑣2 + 𝑤2)⏟          
𝑣𝑐
2

𝑆𝑐𝑜𝑟𝑝𝑜 
(5.132) 

𝐹𝑎𝑒𝑟𝑦
𝑐 =

1

2
𝐶𝑦𝜌𝑎𝑟(𝑢

2 + 𝑣2 + 𝑤2)𝑆𝑐𝑜𝑟𝑝𝑜 
(5.133) 

𝐹𝑎𝑒𝑟𝑧
𝑐 =

1

2
𝐶𝑧𝜌𝑎𝑟(𝑢

2 + 𝑣2 +𝑤2)𝑆𝑐𝑜𝑟𝑝𝑜 
(5.134) 

 

 Analogamente para os momentos aerodinâmicos: 

𝐿 =
1

2
𝐶𝑙𝜌𝑎𝑟(𝑢

2 + 𝑣2 + 𝑤2)𝑆𝑐𝑜𝑟𝑝𝑜𝐷𝑐𝑜𝑟𝑝𝑜  (𝑟𝑜𝑙𝑎𝑔𝑒𝑚) 
(5.135) 

𝑀 =
1

2
𝐶𝑚𝜌𝑎𝑟(𝑢

2 + 𝑣2 + 𝑤2)𝑆𝑐𝑜𝑟𝑝𝑜𝐷𝑐𝑜𝑟𝑝𝑜 (𝐺𝑢𝑖𝑛𝑎𝑑𝑎) 
(5.136) 

𝑁 =
1

2
𝐶𝑛𝜌𝑎𝑟(𝑢

2 + 𝑣2 + 𝑤2)𝑆𝑐𝑜𝑟𝑝𝑜𝐷𝑐𝑜𝑟𝑝𝑜 (𝐴𝑟𝑓𝑎𝑔𝑒𝑚) 
(5.137) 
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 Com os coeficientes linearizados segundo Vuran (2003), dados por: 

𝐶𝑥 = 𝐶𝑥0 (5.138) 

𝐶𝑦 = 𝐶𝑦𝛽𝛽 + 𝐶𝑦𝛿𝛿𝑟 + 𝐶𝑦𝑟
𝐷𝑚

2√𝑢2 + 𝑣2 + 𝑤2
𝑟 

(5.139) 

𝐶𝑧 = 𝐶𝑧𝛼𝛼 + 𝐶𝑧𝛿𝛿𝑒 + 𝐶𝑧𝑞
𝐷𝑚

2√𝑢2 + 𝑣2 + 𝑤2
𝑞 

(5.140) 

𝐶𝑙 = 𝐶𝑙𝛿𝛿𝑎 + 𝐶𝑙𝑝
𝐷𝑚

2√𝑢2 + 𝑣2 + 𝑤2
𝑝 

(5.141) 

𝐶𝑚 = 𝐶𝑚𝛼𝛼 + 𝐶𝑚𝛿𝛿𝑒 + 𝐶𝑚𝑞
𝐷𝑚

2√𝑢2 + 𝑣2 + 𝑤2
𝑞 

(5.142) 

𝐶𝑛 = 𝐶𝑛𝛽𝛽 + 𝐶𝑛𝛿𝛿𝑟 + 𝐶𝑛𝑟
𝐷𝑚

2√𝑢2 + 𝑣2 + 𝑤2
𝑟 

(5.143) 

 

 Os coeficientes 𝐶𝑖 são todos obtidos a partir do software Missile Datcom das 

forças aéreas americanas. Tal consiste num código em FORTRAN que quando 

compilado fornece um executável que lê um arquivo de entrada no formato .dat com 

informações tais como a geometria do míssil, número de seções com superfícies 

aerodinâmicas, ângulo de ataque (𝛼 ≅ 𝑤/𝑢) , ângulo de glissagem (𝛽 ≅ 𝑣/𝑢) , 

número de Mach. 

 Os valores de 𝛿 indicam as deflexões equivalentes a dos ailerons (𝛿𝑎), leme 

(𝛿𝑟) e estabilizadores (𝛿𝑒). Supondo o modelo de superfícies de controle para o 

míssil tal como assinalado pela figura 5.15, é possível relacionar cada uma destas 

deflexões em função das deflexões de cada uma das superfícies de controle do 

míssil, cada qual a 90º da outra. 
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Figura 5.15 – Deflexões das superfícies de controle 

 

𝛿𝑎 =
𝛿1 + 𝛿3
2

 

𝛿𝑒 =
𝛿2 − 𝛿4
2

 

𝛿𝑟 =
𝛿1 − 𝛿3
2

 

Finalmente, de posse destas relações lineares para os coeficientes aerodinâmicos e 

as simplificações propostas é possível, a partir das equações (5.118), (5.125) e 

(5.131) isolar as acelerações lineares e angulares de tal sorte que se obtém um 

sistema não-linear de 9 equações (𝑢̇, 𝑣̇, 𝑤̇, 𝑝̇, 𝑞̇, 𝑟̇, 𝜙̇, 𝜓̇, 𝜃̇)  e 9 incógnitas 

(𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟, 𝜙, 𝜓, 𝜃). As equações estão listadas de (5.144) a (5.152). 

 

𝑢̇ = −
1

2
𝜌𝑎𝑟

𝑢2 + 𝑣2 + 𝑤2

𝑚

𝜋𝐷𝑚
2

4
𝐶𝑥0 − 𝑔𝑠𝑒𝑛𝜃 − 𝑞𝑤 + 𝑟𝑣 

(5.144) 

𝑣̇ = −
1

2
𝜌𝑎𝑟

𝑢2 + 𝑣2 + 𝑤2

𝑚

𝜋𝐷𝑚
2

4
(𝐶𝑦𝛽𝛽 + 𝐶𝑦𝛿𝛿𝑟 + 𝐶𝑦𝑟

𝐷𝑚

2√𝑢2 + 𝑣2 +𝑤2
𝑟) − 𝑔𝑐𝑜𝑠𝜃𝑠𝑒𝑛𝜙 + 𝑝𝑤 − 𝑟𝑢 

(5.145) 

𝑤̇ = −
1

2
𝜌𝑎𝑟

𝑢2 + 𝑣2 +𝑤2

𝑚

𝜋𝐷𝑚
2

4
(𝐶𝑧𝛼𝛼 + 𝐶𝑧𝛿𝛿𝑒 + 𝐶𝑧𝑞

𝐷𝑚

2√𝑢2 + 𝑣2 + 𝑤2
𝑞) − 𝑔𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 + 𝑞𝑢 − 𝑝𝑣 

(5.146) 

𝑝̇ =
1

𝐽𝑥
{
1

2
𝜌𝑎𝑟(𝑢

2 + 𝑣2 + 𝑤2)
𝜋𝐷𝑚

3

4
[𝐶𝑙𝛿 (

𝛿1 + 𝛿3
2

) + 𝐶𝑙𝑝
𝐷𝑚

2√𝑢2 + 𝑣2 +𝑤2
𝑝]} +

(𝐽𝑦 − 𝐽𝑧)

𝐽𝑥
𝑞𝑟 

(5.147) 
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𝑞̇ =
1

𝐽𝑦
{
1

2
𝜌𝑎𝑟(𝑢

2 + 𝑣2 + 𝑤2)
𝜋𝐷𝑚

3

4
[𝐶𝑚𝛼

𝑤

𝑢
+ 𝐶𝑚𝛿

(
𝛿2 − 𝛿4
2

) + 𝐶𝑚𝑞

𝐷𝑚

2√𝑢2 + 𝑣2 + 𝑤2
𝑞]} +

(𝐽𝑧 − 𝐽𝑥)

𝐽𝑦
𝑝𝑟 

(5.148) 

𝑟̇ =
1

𝐽𝑧
{
1

2
𝜌𝑎𝑟(𝑢

2 + 𝑣2 +𝑤2)
𝜋𝐷𝑚

3

4
[𝐶𝑛𝛽

𝑣

𝑢
+ 𝐶𝑛𝛿 (

𝛿1 − 𝛿3
2

) + 𝐶𝑛𝑟
𝐷𝑚

2√𝑢2 + 𝑣2 +𝑤2
𝑟]} +

(𝐽𝑥 − 𝐽𝑦)

𝐽𝑧
𝑝𝑞 

(5.149) 

𝜓̇ =
𝑞𝑠𝑒𝑛𝜙 + 𝑟𝑐𝑜𝑠𝜃

𝑐𝑜𝑠𝜃
 

(5.150) 

𝜃̇ = 𝑞𝑐𝑜𝑠𝜙 − 𝑟𝑠𝑒𝑛𝜙 (5.151) 

𝜙̇ = 𝑝 − (𝑞𝑠𝑒𝑛𝜙 + 𝑟𝑐𝑜𝑠𝜙)𝑡𝑔𝜃 (5.152) 

 

5.5.2. Linearização das equações de movimento 

 

 A fim de formar um sistema de equações lineares aproximadas a partir das 

equações (5.144) a (5.152), para cada uma destas será feita a expansão dos termos 

em série de Taylor ao redor do ponto de equilíbrio, obtendo-se assim relações com 

erro de segunda ordem para cada uma das equações descritas. A forma final do 

sistema de equações será dada, em espaços de estado por: 

{
 
 
 
 

 
 
 
 
𝑢̇
𝑣̇
𝑤̇
𝑝̇
𝑞̇
𝑟̇
𝜓̇

𝜃̇
𝜙̇}
 
 
 
 

 
 
 
 

= [𝐴]

{
 
 
 
 

 
 
 
 
𝑢 + 𝑢0
𝑣 + 𝑣0
𝑤 + 𝑤0
𝑝 + 𝑝0
𝑞 + 𝑞0
𝑟 + 𝑟0
𝜓 + 𝜓0
𝜃 + 𝜃0
𝜙 + 𝜙0}

 
 
 
 

 
 
 
 

+ [𝐵]

{
 
 

 
 𝛿1 + 𝛿10
𝛿2 + 𝛿20
𝛿3 + 𝛿30
𝛿4 + 𝛿40}

 
 

 
 

 

 

 

(5.153) 

 

Linearizando a equação (5.144): 

𝑢̇ ≅ 𝑢0̇ +
𝜕𝑢̇

𝜕𝑢
|
0

(𝑢 − 𝑢0) +
𝜕𝑢̇

𝜕𝑣
|
0

(𝑣 − 𝑣0) +
𝜕𝑢̇

𝜕𝑤
|
0

(𝑤 − 𝑤0) +
𝜕𝑢̇

𝜕𝜃
|
0

(𝜃 − 𝜃0)

+
𝜕𝑢̇

𝜕𝑞
|
0

(𝑞 − 𝑞0) +
𝜕𝑢̇

𝜕𝑟
|
0

(𝑟 − 𝑟0) + 𝒪(Δ𝑢
2) 

 

(5.154) 

 

Com: 
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𝜕𝑢̇

𝜕𝑢
|
0
= −

1

4

𝜌𝑎𝑟
𝑚
𝑢0𝜋𝐷𝑚

2  

𝜕𝑢̇

𝜕𝑣
|
0
= −

1

4

𝜌𝑎𝑟
𝑚
𝑣0𝜋𝐷𝑚

2  

𝜕𝑢̇

𝜕𝑤
|
0
= −

1

4

𝜌𝑎𝑟
𝑚
𝑤0𝜋𝐷𝑚

2  

𝜕𝑢̇

𝜕𝑢
|
0
= −𝑤0 

𝜕𝑢̇

𝜕𝑢
|
0
= −𝑣0 

𝜕𝑢̇

𝜕𝑢
|
0
= −𝑔𝑐𝑜𝑠𝜃0 

A equação (5.145) 

𝑣̇ ≅ 𝑣0̇ +
𝜕𝑣̇

𝜕𝑢
|
0

(𝑢 − 𝑢0) +
𝜕𝑣̇

𝜕𝑣
|
0

(𝑣 − 𝑣0) +
𝜕𝑣̇

𝜕𝑤
|
0

(𝑤 − 𝑤0) +
𝜕𝑣̇

𝜕𝜃
|
0

(𝜃 − 𝜃0)

+
𝜕𝑣̇

𝜕𝜙
|
0

(𝜙 − 𝜙0) +
𝜕𝑢̇

𝜕𝑞
|
0

(𝑝 − 𝑝0) +
𝜕𝑢̇

𝜕𝑟
|
0

(𝑟 − 𝑟0)

+
𝜕𝑣̇

𝜕𝛿1
|
0

(𝛿1 − 𝛿10) +
𝜕𝑣̇

𝜕𝛿1
|
0

(𝛿3 − 𝛿30) + 𝒪(Δ𝑣
2) 

 

 

(5.155) 

 

Com: 

𝜕𝑣̇

𝜕𝑢
|
0
= −

𝜌𝑎𝑟
𝑚
𝑢0 [𝐶𝑦𝛽

𝑣0
𝑢0
+
𝐶𝑦𝛿
2
(𝛿10 − 𝛿30) +

𝐶𝑦𝑟
2

𝐷𝑚

(𝑢0
2 + 𝑣0

2 + 𝑤0
2)
1
2 
𝑟0]
𝜋𝐷𝑚

2

4

+
1

2

𝜌𝑎𝑟
𝑚
(𝑢0
2 + 𝑣0

2 + 𝑤0
2) [𝐶𝑦𝛽

𝑣0

𝑢0
2 +

𝐶𝑦𝑟
2

𝐷𝑚𝑢0

(𝑢0
2 + 𝑣0

2 + 𝑤0
2)
3
2 
𝑟0]
𝜋𝐷𝑚

2

4
− 𝑟0 
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𝜕𝑣̇

𝜕𝑣
|
0
= −

𝜌𝑎𝑟
𝑚
𝑣0 [𝐶𝑦𝛽

𝑣0
𝑢0
+
𝐶𝑦𝛿
2
(𝛿10 − 𝛿30) +

𝐶𝑦𝑟
2

𝐷𝑚

(𝑢0
2 + 𝑣0

2 + 𝑤0
2)
1
2 
𝑟0]
𝜋𝐷𝑚

2

4

+
1

2

𝜌𝑎𝑟
𝑚
(𝑢0
2 + 𝑣0

2 + 𝑤0
2) [
𝐶𝑦𝑟
2

𝐷𝑚𝑣0

(𝑢0
2 + 𝑣0

2 +𝑤0
2)
3
2 
𝑟0 − 𝐶𝑦𝛽

1

𝑢0
]
𝜋𝐷𝑚

2

4
 

𝜕𝑣̇

𝜕𝑢
|
0
= −

𝜌𝑎𝑟
𝑚
𝑤0 [𝐶𝑦𝛽

𝑣0
𝑢0
+
𝐶𝑦𝛿
2
(𝛿10 − 𝛿30) +

𝐶𝑦𝑟
2

𝐷𝑚

(𝑢0
2 + 𝑣0

2 + 𝑤0
2)
1
2 
𝑟0]
𝜋𝐷𝑚

2

4

+
1

2

𝜌𝑎𝑟
𝑚
(𝑢0
2 + 𝑣0

2 + 𝑤0
2) [
𝐶𝑦𝑟
2

𝐷𝑚𝑤0

(𝑢0
2 + 𝑣0

2 + 𝑤0
2)
3
2 
𝑟0]
𝜋𝐷𝑚

2

4
+ 𝑝0 

𝜕𝑣̇

𝜕𝑝
|
0

= 𝑤0 

𝜕𝑣̇

𝜕𝑟
|
0
= −𝑢0 

𝜕𝑣̇

𝜕𝜃
|
0
= 𝑔𝑠𝑒𝑛𝜃0𝑠𝑒𝑛𝜙0 

𝜕𝑣̇

𝜕𝜙
|
0

= −𝑔𝑐𝑜𝑠𝜃0𝑐𝑜𝑠𝜙0 

𝜕𝑣̇

𝜕𝛿1
|
0

= −
1

2

𝜌𝑎𝑟
𝑚
(𝑢0
2 + 𝑣0

2 + 𝑤0
2)
𝐶𝑦𝛿
2

𝜋𝐷𝑚
2

4
 

𝜕𝑣̇

𝜕𝛿3
|
0

=
1

2

𝜌𝑎𝑟
𝑚
(𝑢0
2 + 𝑣0

2 + 𝑤0
2)
𝐶𝑦𝛿
2

𝜋𝐷𝑚
2

4
 

A equação (5.146) 

𝑤̇ ≅ 𝑤0̇ +
𝜕𝑤̇

𝜕𝑢
|
0

(𝑢 − 𝑢0) +
𝜕𝑤̇

𝜕𝑣
|
0

(𝑣 − 𝑣0) +
𝜕𝑤̇

𝜕𝑤
|
0

(𝑤 − 𝑤0) +
𝜕𝑤̇

𝜕𝜃
|
0

(𝜃 − 𝜃0)

+
𝜕𝑤̇

𝜕𝜙
|
0

(𝜙 − 𝜙0) +
𝜕𝑤̇

𝜕𝑝
|
0

(𝑝 − 𝑝0) +
𝜕𝑤̇

𝜕𝑞
|
0

(𝑞 − 𝑞0)

+
𝜕𝑤̇

𝜕𝛿2
|
0

(𝛿2 − 𝛿20) +
𝜕𝑤̇

𝜕𝛿4
|
0

(𝛿4 − 𝛿40) + 𝒪(Δ𝑤
2) 

 

 

(5.156) 
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Com: 

𝜕𝑤̇

𝜕𝑢
|
0
= −

𝜌𝑎𝑟
𝑚
𝑢0 [𝐶𝑧𝛼

𝑤0
𝑢0
+
𝐶𝑧𝛿
2
(𝛿20 − 𝛿40) +

𝐶𝑧𝑞
2

𝐷𝑚

(𝑢0
2 + 𝑣0

2 + 𝑤0
2)
1
2 
𝑞0]

𝜋𝐷𝑚
2

4

+
1

2

𝜌𝑎𝑟
𝑚
(𝑢0
2 + 𝑣0

2 +𝑤0
2) [𝐶𝑧𝛼

𝑤0

𝑢0
2 +

𝐶𝑧𝑞
2

𝐷𝑚𝑢0

(𝑢0
2 + 𝑣0

2 + 𝑤0
2)
3
2 
𝑟0]
𝜋𝐷𝑚

2

4
+ 𝑞0 

𝜕𝑤̇

𝜕𝑣
|
0
= −

𝜌𝑎𝑟
𝑚
𝑣0 [𝐶𝑧𝛼

𝑤0
𝑢0
+
𝐶𝑧𝛿
2
(𝛿20 − 𝛿40) +

𝐶𝑧𝑞
2

𝐷𝑚

(𝑢0
2 + 𝑣0

2 + 𝑤0
2)
1
2 
𝑞0]

𝜋𝐷𝑚
2

4

+
1

2

𝜌𝑎𝑟
𝑚
(𝑢0
2 + 𝑣0

2 + 𝑤0
2) [
𝐶𝑧𝑞
2

𝐷𝑚𝑣0

(𝑢0
2 + 𝑣0

2 + 𝑤0
2)
3
2 
𝑞0]

𝜋𝐷𝑚
2

4
− 𝑝0 

𝜕𝑤̇

𝜕𝑢
|
0
= −

𝜌𝑎𝑟
𝑚
𝑤0 [𝐶𝑧𝛼

𝑤0
𝑢0
+
𝐶𝑧𝛿
2
(𝛿20 − 𝛿40) +

𝐶𝑧𝑞
2

𝐷𝑚

(𝑢0
2 + 𝑣0

2 + 𝑤0
2)
1
2 
𝑞0]

𝜋𝐷𝑚
2

4

+
1

2

𝜌𝑎𝑟
𝑚
(𝑢0
2 + 𝑣0

2 +𝑤0
2) [
𝐶𝑧𝑞
2

𝐷𝑚𝑤0

(𝑢0
2 + 𝑣0

2 + 𝑤0
2)
3
2 
𝑞0 − 𝐶𝑧𝛼

1

𝑢0
]
𝜋𝐷𝑚

2

4
 

𝜕𝑤̇

𝜕𝑝
|
0

= −𝑣0 

𝜕𝑤̇

𝜕𝑞
|
0

= 𝑢0 

𝜕𝑣̇

𝜕𝜃
|
0
= 𝑔𝑠𝑒𝑛𝜃0𝑐𝑜𝑠𝜙0 

𝜕𝑣̇

𝜕𝜙
|
0

= 𝑔𝑐𝑜𝑠𝜃0𝑠𝑒𝑛𝜙0 

𝜕𝑣̇

𝜕𝛿2
|
0

= −
1

2

𝜌𝑎𝑟
𝑚
(𝑢0
2 + 𝑣0

2 + 𝑤0
2)
𝐶𝑧𝛿
2

𝜋𝐷𝑚
2

4
 

𝜕𝑣̇

𝜕𝛿4
|
0

=
1

2

𝜌𝑎𝑟
𝑚
(𝑢0
2 + 𝑣0

2 +𝑤0
2)
𝐶𝑧𝛿
2

𝜋𝐷𝑚
2

4
 

A equação (5.147) 
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𝑝̇ ≅ 𝑝0̇ +
𝜕𝑤̇

𝜕𝑢
|
0

(𝑢 − 𝑢0) +
𝜕𝑝̇

𝜕𝑣
|
0

(𝑣 − 𝑣0) +
𝜕𝑝̇

𝜕𝑤
|
0

(𝑤 − 𝑤0) +
𝜕𝑝̇

𝜕𝑝
|
0

(𝑝 − 𝑝0)

+
𝜕𝑝̇

𝜕𝑞
|
0

(𝑞 − 𝑞0) +
𝜕𝑝̇

𝜕𝑟
|
0

(𝑟 − 𝑟0) +
𝜕𝑝̇

𝜕𝛿1
|
0

(𝛿1 − 𝛿10)

+
𝜕𝑝̇

𝜕𝛿3
|
0

(𝛿3 − 𝛿30) + 𝒪(Δ𝑝
2) 

 

 

(5.157) 

 

Com: 

𝜕𝑝̇

𝜕𝑢
|
0
=
1

𝐽𝑥
{𝜌𝑎𝑟𝑢0

𝜋𝐷𝑚
3

4
[𝐶𝑙𝛿 (

𝛿10 + 𝛿30
2

) +
𝐶𝑙𝑝
2

𝐷𝑚

√𝑢0
2 + 𝑣0

2 + 𝑤0
2
𝑝0]}

−
1

𝐽𝑥
[
1

2
𝜌𝑎𝑟(𝑢0

2 + 𝑣0
2 + 𝑤0

2)
𝜋𝐷𝑚

3

4

𝐶𝑙𝑝
2

𝐷𝑚𝑢0

(𝑢0
2 + 𝑣0

2 + 𝑤0
2)
3
2

𝑝0] 

𝜕𝑝̇

𝜕𝑣
|
0
=
1

𝐽𝑥
{𝜌𝑎𝑟𝑣0

𝜋𝐷𝑚
3

4
[𝐶𝑙𝛿 (

𝛿10 + 𝛿30
2

) +
𝐶𝑙𝑝
2

𝐷𝑚

√𝑢0
2 + 𝑣0

2 + 𝑤0
2
𝑝0]}

−
1

𝐽𝑥
[
1

2
𝜌𝑎𝑟(𝑢0

2 + 𝑣0
2 + 𝑤0

2)
𝜋𝐷𝑚

3

4

𝐶𝑙𝑝
2

𝐷𝑚𝑣0

(𝑢0
2 + 𝑣0

2 + 𝑤0
2)
3
2

𝑝0] 

𝜕𝑝̇

𝜕𝑤
|
0
=
1

𝐽𝑥
{𝜌𝑎𝑟𝑤0

𝜋𝐷𝑚
3

4
[𝐶𝑙𝛿 (

𝛿10 + 𝛿30
2

) +
𝐶𝑙𝑝
2

𝐷𝑚

√𝑢0
2 + 𝑣0

2 +𝑤0
2
𝑝0]}

−
1

𝐽𝑥
[
1

2
𝜌𝑎𝑟(𝑢0

2 + 𝑣0
2 + 𝑤0

2)
𝜋𝐷𝑚

3

4

𝐶𝑙𝑝

2

𝐷𝑚𝑤0

(𝑢0
2 + 𝑣0

2 + 𝑤0
2)
3
2

𝑝0] 

𝜕𝑝̇

𝜕𝑝
|
0

=
1

𝐽𝑥
{
1

2
𝜌𝑎𝑟(𝑢0

2 + 𝑣0
2 + 𝑤0

2)
𝜋𝐷𝑚

3

4
[
𝐶𝑙𝑝
2

𝐷𝑚

√𝑢0
2 + 𝑣0

2 + 𝑤0
2
]} 

𝜕𝑝̇

𝜕𝑞
|
0

=
𝐽𝑦 − 𝐽𝑧

𝐽𝑥
𝑟0 

𝜕𝑝̇

𝜕𝑟
|
0
=
𝐽𝑦 − 𝐽𝑧

𝐽𝑥
𝑞0 

𝜕𝑝̇

𝜕𝛿1
|
0

=
1

𝐽𝑥
{𝜌𝑎𝑟(𝑢0

2 + 𝑣0
2 + 𝑤0

2)
𝜋𝐷𝑚

3

4

𝐶𝑙𝛿
2
} 

𝜕𝑝̇

𝜕𝛿3
|
0

=
1

𝐽𝑥
{𝜌𝑎𝑟(𝑢0

2 + 𝑣0
2 + 𝑤0

2)
𝜋𝐷𝑚

3

4

𝐶𝑙𝛿
2
} 
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A equação (5.148) 

𝑞̇ ≅ 𝑞0̇ +
𝜕𝑞̇

𝜕𝑢
|
0

(𝑢 − 𝑢0) +
𝜕𝑞̇

𝜕𝑣
|
0

(𝑣 − 𝑣0) +
𝜕𝑞̇

𝜕𝑤
|
0

(𝑤 − 𝑤0) +
𝜕𝑞̇

𝜕𝑝
|
0

(𝑝 − 𝑝0)

+
𝜕𝑞̇

𝜕𝑞
|
0

(𝑞 − 𝑞0) +
𝜕𝑞̇

𝜕𝑟
|
0

(𝑟 − 𝑟0) +
𝜕𝑞̇

𝜕𝛿2
|
0

(𝛿2 − 𝛿20)

+
𝜕𝑞̇

𝜕𝛿4
|
0

(𝛿4 − 𝛿40) + 𝒪(Δ𝑞
2) 

 

 

(5.158) 

 

Com: 

𝜕𝑞̇

𝜕𝑢
|
0
=
1

𝐽𝑦
{𝜌𝑎𝑟𝑢0

𝜋𝐷𝑚
3

4
[𝐶𝑚𝛼

𝑤0
𝑢0
+ 𝐶𝑚𝛿 (

𝛿20 − 𝛿40
2

) +
𝐶𝑚𝑞
2

𝐷𝑚

√𝑢0
2 + 𝑣0

2 + 𝑤0
2
𝑞0]}

−
1

𝐽𝑦
{
1

2
𝜌𝑎𝑟(𝑢0

2 + 𝑣0
2 + 𝑤0

2)
𝜋𝐷𝑚

3

4
[𝐶𝑚𝛼

𝑤0

𝑢0
2 +

𝐶𝑚𝑞
2

𝐷𝑚𝑢0

(𝑢0
2 + 𝑣0

2 + 𝑤0
2)
3
2

𝑞0]} 

𝜕𝑞̇

𝜕𝑣
|
0
=
1

𝐽𝑦
{𝜌𝑎𝑟𝑣0

𝜋𝐷𝑚
3

4
[𝐶𝑚𝛼

𝑤0
𝑢0
+ 𝐶𝑚𝛿 (

𝛿20 − 𝛿40
2

) +
𝐶𝑚𝑞
2

𝐷𝑚

√𝑢0
2 + 𝑣0

2 + 𝑤0
2
𝑞0]}

−
1

𝐽𝑦
{
1

2
𝜌𝑎𝑟(𝑢0

2 + 𝑣0
2 + 𝑤0

2)
𝜋𝐷𝑚

3

4
[
𝐶𝑚𝑞
2

𝐷𝑚𝑣0

(𝑢0
2 + 𝑣0

2 + 𝑤0
2)
3
2

𝑞0]} 

𝜕𝑞̇

𝜕𝑤
|
0
=
1

𝐽𝑦
{𝜌𝑎𝑟𝑤0

𝜋𝐷𝑚
3

4
[𝐶𝑚𝛼

𝑤0
𝑢0
+ 𝐶𝑚𝛿 (

𝛿20 − 𝛿40
2

) +
𝐶𝑚𝑞

2

𝐷𝑚

√𝑢0
2 + 𝑣0

2 +𝑤0
2
𝑞0]}

+
1

𝐽𝑦
{
1

2
𝜌𝑎𝑟(𝑢0

2 + 𝑣0
2 + 𝑤0

2)
𝜋𝐷𝑚

3

4
[𝐶𝑚𝛼

1

𝑢0
−
𝐶𝑚𝑞
2

𝐷𝑚𝑤0

(𝑢0
2 + 𝑣0

2 + 𝑤0
2)
3
2

𝑞0]} 

𝜕𝑞̇

𝜕𝑝
|
0

=
𝐽𝑧 − 𝐽𝑥
𝐽𝑦

𝑟0 

𝜕𝑞̇

𝜕𝑞
|
0

=
1

𝐽𝑦
{
1

2
𝜌𝑎𝑟(𝑢0

2 + 𝑣0
2 + 𝑤0

2)
𝜋𝐷𝑚

3

4
[
𝐶𝑚𝑞
2

𝐷𝑚

√𝑢0
2 + 𝑣0

2 + 𝑤0
2
]} 

𝜕𝑞̇

𝜕𝑟
|
0
=
𝐽𝑧 − 𝐽𝑥
𝐽𝑦

𝑝0 

𝜕𝑞̇

𝜕𝛿2
|
0

=
1

𝐽𝑦
{𝜌𝑎𝑟(𝑢0

2 + 𝑣0
2 + 𝑤0

2)
𝜋𝐷𝑚

3

4

𝐶𝑚𝛿
2
} 
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𝜕𝑞̇

𝜕𝛿4
|
0

= −
1

𝐽𝑦
{𝜌𝑎𝑟(𝑢0

2 + 𝑣0
2 + 𝑤0

2)
𝜋𝐷𝑚

3

4

𝐶𝑚𝛿
2
} 

A equação (5.149) 

𝑟̇ ≅ 𝑟0̇ +
𝜕𝑟̇

𝜕𝑢
|
0

(𝑢 − 𝑢0) +
𝜕𝑟̇

𝜕𝑣
|
0

(𝑣 − 𝑣0) +
𝜕𝑟̇

𝜕𝑤
|
0

(𝑤 − 𝑤0) +
𝜕𝑟̇

𝜕𝑝
|
0

(𝑝 − 𝑝0)

+
𝜕𝑟̇

𝜕𝑞
|
0

(𝑞 − 𝑞0) +
𝜕𝑟̇

𝜕𝑟
|
0

(𝑟 − 𝑟0) +
𝜕𝑟̇

𝜕𝛿1
|
0

(𝛿1 − 𝛿10)

+
𝜕𝑟̇

𝜕𝛿3
|
0

(𝛿3 − 𝛿30) + 𝒪(Δ𝑟
2) 

 

 

(5.159) 

 

Com: 

𝜕𝑟̇

𝜕𝑢
|
0
=
1

𝐽𝑧
{𝜌𝑎𝑟𝑢0

𝜋𝐷𝑚
3

4
[𝐶𝑛𝛽

𝑣0
𝑢0
+ 𝐶𝑛𝛿 (

𝛿10 − 𝛿30
2

) +
𝐶𝑛𝑟
2

𝐷𝑚

√𝑢0
2 + 𝑣0

2 + 𝑤0
2
𝑟0]}

−
1

𝐽𝑧
{
1

2
𝜌𝑎𝑟(𝑢0

2 + 𝑣0
2 + 𝑤0

2)
𝜋𝐷𝑚

3

4
[𝐶𝑛𝛽

𝑣0

𝑢0
2 +

𝐶𝑛𝑟
2

𝐷𝑚𝑢0

(𝑢0
2 + 𝑣0

2 + 𝑤0
2)
3
2

𝑟0]} 

𝜕𝑟̇

𝜕𝑣
|
0
=
1

𝐽𝑧
{𝜌𝑎𝑟𝑣0

𝜋𝐷𝑚
3

4
[𝐶𝑛𝛽

𝑣0
𝑢0
+ 𝐶𝑛𝛿 (

𝛿10 − 𝛿30
2

) +
𝐶𝑛𝑟
2

𝐷𝑚

√𝑢0
2 + 𝑣0

2 + 𝑤0
2
𝑟0]}

+
1

𝐽𝑦
{
1

2
𝜌𝑎𝑟(𝑢0

2 + 𝑣0
2 + 𝑤0

2)
𝜋𝐷𝑚

3

4
[𝐶𝑛𝛽

1

𝑢0
−
𝐶𝑛𝑟
2

𝐷𝑚𝑣0

(𝑢0
2 + 𝑣0

2 + 𝑤0
2)
3
2

𝑟0]} 

𝜕𝑟̇

𝜕𝑤
|
0
=
1

𝐽𝑧
{𝜌𝑎𝑟𝑤0

𝜋𝐷𝑚
3

4
[𝐶𝑛𝛽

𝑤0
𝑢0
+ 𝐶𝑛𝛿 (

𝛿10 − 𝛿30
2

) +
𝐶𝑛𝑟
2

𝐷𝑚

√𝑢0
2 + 𝑣0

2 +𝑤0
2
𝑟0]}

−
1

𝐽𝑧
{
1

2
𝜌𝑎𝑟(𝑢0

2 + 𝑣0
2 + 𝑤0

2)
𝜋𝐷𝑚

3

4
[
𝐶𝑛𝑟
2

𝐷𝑚𝑤0

(𝑢0
2 + 𝑣0

2 + 𝑤0
2)
3
2

𝑟0]} 

𝜕𝑟̇

𝜕𝑝
|
0

=
𝐽𝑥 − 𝐽𝑦

𝐽𝑧
𝑞0 

𝜕𝑟̇

𝜕𝑝
|
0

=
𝐽𝑥 − 𝐽𝑦

𝐽𝑧
𝑝0 

𝜕𝑟̇

𝜕𝑟
|
0
=
1

𝐽𝑧
{
1

2
𝜌𝑎𝑟(𝑢0

2 + 𝑣0
2 + 𝑤0

2)
𝜋𝐷𝑚

3

4
[
𝐶𝑛𝑟
2

𝐷𝑚

√𝑢0
2 + 𝑣0

2 + 𝑤0
2
]} 
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𝜕𝑟̇

𝜕𝛿1
|
0

=
1

𝐽𝑧
{𝜌𝑎𝑟(𝑢0

2 + 𝑣0
2 + 𝑤0

2)
𝜋𝐷𝑚

3

4

𝐶𝑛𝛿
2
} 

𝜕𝑟̇

𝜕𝛿3
|
0

= −
1

𝐽𝑧
{𝜌𝑎𝑟(𝑢0

2 + 𝑣0
2 + 𝑤0

2)
𝜋𝐷𝑚

3

4

𝐶𝑛𝛿
2
} 

A equação (5.150) 

𝜓̇ ≅ 𝜓0̇ +
𝜕𝜓̇

𝜕𝑞
|
0

(𝑞 − 𝑞0) +
𝜕𝜓̇

𝜕𝑟
|
0

(𝑟 − 𝑟0) +
𝜕𝜓̇

𝜕𝜃
|
0

(𝜃 − 𝜃0) +
𝜕𝜓̇

𝜕𝜙
|
0

(𝜙 − 𝜙0)

+ 𝒪(Δ𝜓2) 

 

(5.160) 

 

Com: 

𝜕𝜓̇

𝜕𝑞
|
0

=
𝑠𝑒𝑛𝜙0
𝑐𝑜𝑠𝜃0

 

𝜕𝜓̇

𝜕𝑟
|
0

=
𝑐𝑜𝑠𝜙0
𝑐𝑜𝑠𝜃0

 

𝜕𝜓̇

𝜕𝜃
|
0

= (𝑞0𝑠𝑒𝑛𝜙0 + 𝑟0𝑐𝑜𝑠𝜙0)𝑡𝑔𝜃0 

𝜕𝜓̇

𝜕𝜙
|
0

=
𝑞0𝑐𝑜𝑠𝜙0 − 𝑟0𝑠𝑒𝑛𝜙0

𝑐𝑜𝑠𝜃0
 

 

A equação (5.151) 

𝜃̇ ≅ 𝜃0̇ +
𝜕𝜃̇

𝜕𝑞
|
0

(𝑞 − 𝑞0) +
𝜕𝜃̇

𝜕𝑟
|
0

(𝑟 − 𝑟0) +
𝜕𝜃̇

𝜕𝜙
|
0

(𝜙 − 𝜙0) + 𝒪(Δ𝜃
2) 

 

(5.161) 

 

Com: 

𝜕𝜃̇

𝜕𝑞
|
0

= 𝑐𝑜𝑠𝜙0 

𝜕𝜃̇

𝜕𝑟
|
0

= −𝑠𝑒𝑛𝜙0 
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𝜕𝜃̇

𝜕𝜙
|
0

= −𝑞0𝑠𝑒𝑛𝜙0 − 𝑟0𝑐𝑜𝑠𝜙0 

A equação (5.152) 

𝜙̇ ≅ 𝜙0̇ +
𝜕𝜙̇

𝜕𝑝
|
0

(𝑝 − 𝑝0) +
𝜕𝜙̇

𝜕𝑞
|
0

(𝑞 − 𝑞0) +
𝜕𝜙̇

𝜕𝑟
|
0

(𝑟 − 𝑟0) +
𝜕𝜙̇

𝜕𝜃
|
0

(𝜃 − 𝜃0)

+
𝜕𝜙̇

𝜕𝜙
|
0

(𝜙 − 𝜙0) + 𝒪(Δ𝜙
2) 

 

(5.162) 

 

Com: 

𝜕𝜙̇

𝜕𝑞
|
0

= 1 

𝜕𝜙̇

𝜕𝑞
|
0

= −𝑠𝑒𝑛𝜙0𝑡𝑔𝜃0 

𝜕𝜙̇

𝜕𝑟
|
0

= −𝑐𝑜𝑠𝜙0𝑡𝑔𝜃0 

𝜕𝜙̇

𝜕𝜃
|
0

= −
𝑞0𝑠𝑒𝑛𝜙0 + 𝑟0𝑐𝑜𝑠𝜙0

cos2 𝜃0
 

𝜕𝜙̇

𝜕𝜙
|
0

= (−𝑞0𝑠𝑒𝑛𝜙0 + 𝑟0𝑐𝑜𝑠𝜙0)𝑡𝑔𝜃0 

 

Com isso, as matrizes dinâmicas e de entrada são dadas por: 
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[𝐴] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑢̇

𝜕𝑢
|
0

𝜕𝑢̇

𝜕𝑣
|
0

𝜕𝑢̇

𝜕𝑤
|
0

0
𝜕𝑢̇

𝜕𝑞
|
0

𝜕𝑢̇

𝜕𝑟
|
0

0
𝜕𝑢̇

𝜕𝜃
|
0

0

𝜕𝑣̇

𝜕𝑢
|
0

𝜕𝑣̇

𝜕𝑣
|
0

𝜕𝑣̇

𝜕𝑤
|
0

𝜕𝑣̇

𝜕𝑝
|
0

0
𝜕𝑣̇

𝜕𝑟
|
0

0
𝜕𝑣̇

𝜕𝜃
|
0

𝜕𝑣̇

𝜕𝜙
|
0

𝜕𝑤̇

𝜕𝑢
|
0

𝜕𝑤̇

𝜕𝑣
|
0

𝜕𝑤̇

𝜕𝑤
|
0

𝜕𝑤̇

𝜕𝑝
|
0

𝜕𝑤̇

𝜕𝑞
|
0

0 0
𝜕𝑤̇

𝜕𝜃
|
0

𝜕𝑤̇

𝜕𝜙
|
0

𝜕𝑝̇

𝜕𝑢
|
0

𝜕𝑝̇

𝜕𝑣
|
0

𝜕𝑝̇

𝜕𝑤
|
0

𝜕𝑝̇

𝜕𝑝
|
0

𝜕𝑝̇

𝜕𝑞
|
0

𝜕𝑝̇

𝜕𝑟
|
0

0 0 0

𝜕𝑞̇

𝜕𝑢
|
0

𝜕𝑞̇

𝜕𝑣
|
0

𝜕𝑞̇

𝜕𝑤
|
0

𝜕𝑞̇

𝜕𝑝
|
0

𝜕𝑞̇

𝜕𝑞
|
0

𝜕𝑞̇

𝜕𝑟
|
0

0 0 0

𝜕𝑟̇

𝜕𝑢
|
0

𝜕𝑟̇

𝜕𝑣
|
0

𝜕𝑟̇

𝜕𝑤
|
0

𝜕𝑟̇

𝜕𝑝
|
0

𝜕𝑟̇

𝜕𝑞
|
0

𝜕𝑟̇

𝜕𝑟
|
0

0 0 0

0 0 0 0
𝜕𝜓̇

𝜕𝑞
|
0

𝜕𝜓̇

𝜕𝑟
|
0

0
𝜕𝜓̇

𝜕𝜃
|
0

𝜕𝜓̇

𝜕𝜙
|
0

0 0 0 0
𝜕𝜃̇

𝜕𝑞
|
0

𝜕𝜃̇

𝜕𝑟
|
0

0 0
𝜕𝜃̇

𝜕𝜙
|
0

0 0 0
𝜕𝜙̇

𝜕𝑝
|
0

𝜕𝜙̇

𝜕𝑞
|
0

𝜕𝜙̇

𝜕𝑟
|
0

0
𝜕𝜙̇

𝜕𝜃
|
0

𝜕𝜙̇

𝜕𝜙
|
0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

(5.163) 

 

[𝐵] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0
𝜕𝑣̇

𝜕𝛿1
|
0

0
𝜕𝑣̇

𝜕𝛿3
|
0

0

0
𝜕𝑤̇

𝜕𝛿2
|
0

0
𝜕𝑤̇

𝜕𝛿4
|
0

𝜕𝑝̇

𝜕𝛿1
|
0

0
𝜕𝑞̇

𝜕𝛿3
|
0

0

0
𝜕𝑞̇

𝜕𝛿2
|
0

0
𝜕𝑞̇

𝜕𝛿4
|
0

𝜕𝑟̇

𝜕𝛿1
|
0

0
𝜕𝑤̇

𝜕𝛿3
|
0

0

0 0 0 0
0 0 0 0
0 0 0 0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

(5.164) 

 

A matriz de observação está de acordo com os sensores disponíveis para a 

mensuração dos parâmetros. Em geral, para obtenção dos estados selecionados 

para o modelo, é usual a utilização de um giroscópio (taxa de variação da posição 

angular) e de um acelerômetro (taxa de variação das velocidades) solidários ao 
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míssil. Esta é uma segunda justificativa para o fato das equações serem todas 

avaliadas no referencial do corpo em movimento, dado que estes sensores fornecem 

medidas neste sistema de referência, podendo eventualmente serem integradas e 

transformadas para a base do referencial inercial, possibilitando a obtenção das 

posição do míssil a cada instante. Desta forma: 

[𝐶] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑢̇

𝜕𝑢
|
0

𝜕𝑢̇

𝜕𝑣
|
0

𝜕𝑢̇

𝜕𝑤
|
0

0
𝜕𝑢̇

𝜕𝑞
|
0

𝜕𝑢̇

𝜕𝑟
|
0

0
𝜕𝑢̇

𝜕𝜃
|
0

0

𝜕𝑣̇

𝜕𝑢
|
0

𝜕𝑣̇

𝜕𝑣
|
0

𝜕𝑣̇

𝜕𝑤
|
0

𝜕𝑣̇

𝜕𝑝
|
0

0
𝜕𝑣̇

𝜕𝑟
|
0

0
𝜕𝑣̇

𝜕𝜃
|
0

𝜕𝑣̇

𝜕𝜙
|
0

𝜕𝑤̇

𝜕𝑢
|
0

𝜕𝑤̇

𝜕𝑣
|
0

𝜕𝑤̇

𝜕𝑤
|
0

𝜕𝑤̇

𝜕𝑝
|
0

𝜕𝑤̇

𝜕𝑞
|
0

0 0
𝜕𝑤̇

𝜕𝜃
|
0

𝜕𝑤̇

𝜕𝜙
|
0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0
𝜕𝜓̇

𝜕𝑞
|
0

𝜕𝜓̇

𝜕𝑟
|
0

0
𝜕𝜓̇

𝜕𝜃
|
0

𝜕𝜓̇

𝜕𝜙
|
0

0 0 0 0
𝜕𝜃̇

𝜕𝑞
|
0

𝜕𝜃̇

𝜕𝑟
|
0

0 0
𝜕𝜃̇

𝜕𝜙
|
0

0 0 0
𝜕𝜙̇

𝜕𝑝
|
0

𝜕𝜙̇

𝜕𝑞
|
0

𝜕𝜙̇

𝜕𝑟
|
0

0
𝜕𝜙̇

𝜕𝜃
|
0

𝜕𝜙̇

𝜕𝜙
|
0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

(5.165) 

 

E a matriz de incidência direta: 

[𝐷] =

[
 
 
 
 
 
 
 
 
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0]

 
 
 
 
 
 
 
 

 

 

 

 

(5.166) 

 

Com isto é possível representar o sistema na forma de espaços de estados, maneira 

adequada para a síntese do controlador a partir da teoria de controle moderno, tal 

como ilustrada em Friedland (1986). 
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{
𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝐹𝑥𝑝
𝑦 = 𝐶𝑥 + 𝐷𝑢

 

 

A matriz [𝐹]  de perturbações é dada pelos termos oriundos das forças de 

perturbação já mencionadas, como por exemplo rajadas. Desta forma, a matriz [𝐹],  

doravante denominada de matriz das perturbações é dada pela equação (5.167). 

 

[𝐹] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1

𝑚
0 0 0 0 0

0
1

𝑚
0 0 0 0

0 0
1

𝑚
0 0 0

0 0 0
1

𝐽𝑥
0 0

0 0 0 0
1

𝐽𝑦
0

0 0 0 0 0
1

𝐽𝑧
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

(5.167) 

 

Com: 

𝑥𝑝 =

{
 
 
 

 
 
 
𝐹𝑝𝑒𝑟𝑡𝑥
𝑐

𝐹𝑝𝑒𝑟𝑡𝑦
𝑐

𝐹𝑝𝑒𝑟𝑡𝑧
𝑐

𝑀𝑝𝑒𝑟𝑡𝑥
𝑐

𝑀𝑝𝑒𝑟𝑡𝑦
𝑐

𝑀𝑝𝑒𝑟𝑡𝑧
𝑐

}
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5.7. SIMULAÇÃO DO ESCOAMENTO VISCOSO NO INTERIOR DO BOCAL 

 

 O escoamento no interior do bocal será simulado utilizando um software com 

código comercial de volumes finitos. Ainda que as opções já estejam completamente 

embutidas no programa, aqui serão demonstradas e justificadas todas as opções 

relativas as funções de interpolação utilizadas, tipo de escoamento em estudo e 

modelo do fluido. 

 

5.7.1. Conjunto de equações adotado 

 

 Levando em conta que o estudo pretendido visa verificar as diferenças entre 

um bocal suposto de geometria ótima gerado a partir do uso do método das 

características durante a região na qual o empuxo está sendo gerado em seu 

máximo, o que se pretende verificar não é o regime transiente, mas sim o 

escoamento em regime permanente. Desta forma, todos as taxas de variação das 

propriedades são negligenciadas, acarretando no sistema de equações parciais 

diferenciais para um escoamento turbulento dado pelas equações (5.168) a (5.174). 

 

∇ ∙ (𝜌𝑢⃗⃗̅̅̅̅ ) = 0 (5.168) 

∇ ∙ (𝜌𝑢⃗⃗𝑢̅̅ ̅̅ ̅) = ∇ ∙ (𝜇∇u̅) −
𝜕𝑃̅

𝜕𝑥
+ [−

𝜕(𝜌̅𝑢′2̅̅ ̅̅ ̅̅ )

𝜕𝑥
−
𝜕(𝜌̅𝑢′𝑣′̅̅ ̅̅ ̅̅ ̅)

𝜕𝑦
−
𝜕(𝜌̅𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅)

𝜕𝑧
] 

(5.169) 

∇ ∙ (𝜌𝑢⃗⃗𝑣̅̅ ̅̅ ̅) = ∇ ∙ (𝜇∇𝑣̅) −
𝜕𝑃̅

𝜕𝑦
+ [−

𝜕(𝜌̅𝑣′𝑢′̅̅ ̅̅ ̅̅ ̅)

𝜕𝑥
−
𝜕(𝜌̅𝑣′2̅̅ ̅̅ ̅̅ )

𝜕𝑦
−
𝜕(𝜌̅𝑣′𝑤′̅̅ ̅̅ ̅̅ ̅)

𝜕𝑧
] 

(5.170) 

∇ ∙ (𝜌𝑢⃗⃗𝑤̅̅ ̅̅ ̅̅ ) = ∇ ∙ (𝜇∇𝑤̅) −
𝜕𝑃̅

𝜕𝑧
+ [−

𝜕(𝜌̅𝑤′𝑢′̅̅ ̅̅ ̅̅ ̅)

𝜕𝑥
−
𝜕(𝜌̅𝑤′𝑣′̅̅ ̅̅ ̅̅ ̅̅ )

𝜕𝑦
−
𝜕(𝜌̅𝑤′2̅̅ ̅̅ ̅̅ )

𝜕𝑧
] 

(5.171) 

∇ ∙ (𝜌𝑢⃗⃗𝑇̅̅ ̅̅ ̅̅ ) = ∇ ∙ (𝜇∇𝑇̅) + [−
𝜕(𝜌̅𝑢′𝑇′̅̅ ̅̅ ̅̅ ̅)

𝜕𝑥
−
𝜕(𝜌̅𝑣′𝑇′̅̅ ̅̅ ̅̅ ̅)

𝜕𝑦
−
𝜕(𝜌̅𝑤′𝑇′̅̅ ̅̅ ̅̅ ̅̅ )

𝜕𝑧
] 

(5.172) 

∇ ∙ (𝜌𝑢⃗⃗𝑘) = ∇ ∙ (
𝜇𝑡
𝜎𝑘
∇𝑘) + 𝑃𝑘 − 𝛽

∗𝜌𝑘𝜔 
(5.173) 
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∇ ∙ (𝜌𝑢⃗⃗𝜔) = ∇ ∙ ((𝜇 +
𝜇𝑡
𝜎𝜔,1

)∇𝜔) + 𝛾2 (2𝜌𝑆𝑖𝑗 ∙ 𝑆𝑖𝑗 −
2

3
𝜌𝜔

𝜕𝑢𝑖
𝜕𝑥𝑗

𝛿𝑖𝑗) − 𝛽2𝜌𝜔
2

+ 2
𝜌

𝜎𝜔,2

𝜕𝑘

𝜕𝑥𝑘

𝜕𝜔

𝜕𝑥𝑘
 

 

(5.174) 

 

 Integrando estas equações num volume finito infinitesimal e utilizando o 

teorema de Gauss para eliminar os divergentes e analisar as propriedades nas 

faces, fazendo-se necessário o uso de funções de interpolação para a avaliação nas 

faces. 

 

5.7.2. Funções de interpolação 

 

 No caso em questão as funções de interpolação a serem adotadas são todas 

de ordem superior, evitando-se assim o uso do método Upwind de 1ª ordem que, 

embora garanta convergência incondicional, pode acarretar em difusão numérica, 

conforme discutido em Maliska (2013), o que acarreta em solução inadequada dada 

sua forte natureza dissipativa. Uma teoria para a difusão numérica está no fato da 

interpolação upwind não lidar, em problemas bi e tridimensionais, com a direções 

dadas pela composição das coordenadas das propriedades, incorrendo em 

problemas numéricos. Maliska (2013), por outro lado, defende que estas oscilações 

numéricas são advindas do fato deste ser um método com erro de truncamento de 

1ª ordem e de ordem dissipativa, não capturando de maneira tão adequada como 

funções de ordem superior, a dinâmica real do escoamento.  

 Tendo em vista este horizonte, a escolha das funções de interpolação foi feita 

de modo a se priorizar esquemas com erros de ordem superior. Não serão 

apresentadas as deduções relativas as funções de interpolação por não fazerem 

parte do escopo do trabalho, mas tanto Malalasekera (1995) quanto Maliska (2013) 

as trazem de maneira bem detalhada. 

 Para os termos difusivos, a escolha foi pelo esquema de diferenças centradas 

(CDS – Central Difference Scheme) dado seu erro de truncamento de 2ª ordem. 

Este esquema está apresentado pela equação (5.175) para a face leste (E) do 
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volume cujo centro é dado pelo ponto P, de uma malha estruturada. Não serão 

discutidas malhas não estruturadas no presente trabalho pois escopo aqui é de 

somente ilustrar ao leitor os esquemas de interpolação utilizados. 

𝜕𝜙

𝜕𝑥
|
𝑒
=
𝜙𝐸 − 𝜙𝑃
Δ𝑥𝑒

+ 𝒪(Δ𝑥𝑒
2) 

(5.175) 

 

 Por sua vez, os termos convectivos - muito importantes no problema em 

questão dada o escoamento veloz no interior – foram também adotados de ordem 

superior. A escolha não se deu por um só tendo em vista questões de estabilidade e 

convergência dependo do problema adotado. Tanto o método Upwind de 2ª ordem 

quanto o método QUICK (Quadratic Upwind Interpolation Convective Kinematics) 

foram utilizados. As funções de interpolação, em relação a figura 5.16, estão 

apresentadas pelas equações (5.176) e (5.177). 

 

 

Figura 5.16 – Malha estruturada (extraído de Saltara, 2014) 

 

 Upwind de 2ª ordem 

 

𝜙𝑓 =
3

2
𝜙𝑈 −

1

2
𝜙𝑈𝑈 + 𝒪(Δ𝑥

2) 
(5.176) 
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 QUICK 

 

𝜙𝑓 =
6𝜙𝑈 + 3𝜙𝐷 − 𝜙𝑈𝑈

8
+ 𝒪(Δ𝑥3) 

(5.177) 

 

5.7.3. Escolha do fluído 

 

 Embora o bocal tenha sido dimensionado para o escoamento dos gases de 

combustão do KNDX, como não foi encontrada a composição deste e o escopo é de 

somente comparar o padrão de escoamento entre dois bocais de mesma razão de 

áreas de saída e garganta, um com geometria ótima e outro com geometria cônica, 

adotou-se o ar como fluído de trabalho. Este está sujeito as mesmas condições de 

contorno de entrada (𝑝𝑐 = 2,5 𝑀𝑃𝑎 𝑒 𝑇𝑐 = 1350 𝐾) e saída (𝑝𝑎𝑚𝑏 = 101,325 𝑘𝑃𝑎, 𝑇𝑐 =

300 𝐾) em relação ao projeto inicial. 

 Foram simuladas tanto situações viscosas quanto não viscosas para cada 

uma das geometrias propostas e fim de realizar as comparações do efeito viscoso 

no escoamento. Para o caso inviscido as únicas considerações foram a adoção do 

gás como ideal e utilização de polinômios em função da temperatura para o cálculo 

do calor específico, este já embutido no software. Para o caso viscoso, além destes 

parâmetros, utilizou-se a lei de viscosidade de Sutherland (CFD Online, 2013) para o 

ar, dada pela equação (5.178). 

 

𝜇 = 𝜇𝑟𝑒𝑓 (
𝑇

𝑇𝑟𝑒𝑓
)

3
2 𝑇𝑟𝑒𝑓 + 𝑆

𝑇 + 𝑆
 

(5.178) 

 

 Com 𝑇𝑟𝑒𝑓 uma temperatura de referência, 𝜇𝑟𝑒𝑓 a viscosidade de referência calculada 

a 𝑇𝑟𝑒𝑓  e 𝑆 a temperatura de Sutherland. Para o caso do ar, 𝜇𝑟𝑒𝑓 = 1,716.10
−5 𝑘𝑔/

(𝑚. 𝑠), 𝑇𝑟𝑒𝑓 = 273.15 𝐾 e 𝑆 = 110,4 𝐾. 
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 A condutividade térmica também é variável de acordo com a teoria cinética 

dos gases, sendo dada por (5.179) conforme explicitado em UC Davis (2006). 

 

𝑘 =
15

4

𝑅

𝑀
𝜇 (

4

15

𝑐𝑝𝑀

𝑅
+
1

3
) 

(5.179) 

 

Com 𝑀 a massa molecular do fluído, 𝑐𝑝 o calor específico a pressão constante, 𝑅 a 

constante dos gases perfeitos e 𝜇  a viscosidade dinâmica calculada a partir da 

formulação de Sutherland. 

 

5.7.4. Malhas e estratégias de simulação 

 

 Para todas as simulações realizadas foram usadas malhas grosseiras e 

outras mais refinadas com o mesmo setup de simulação em busca de se fazer um 

estudo de convergência, ou seja, verificar se a solução é independente da malha. 

Em geral a malha refinada possui ao menos o dobro dos elementos da malha mais 

grosseira, por sua vez já fina, a fim de capturar o fenômeno corretamente e buscar 

estabilidade da solução. As figura 5.17 a 5.20 ilustram as malhas utilizadas. 

 

 

Figura 5.17 – Malha grosseira para o caso do bocal de geometria ótima 
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Figura 5.18 – Malha refinada para o caso do bocal de geometria ótima 

 

 

Figura 5.19 – Malha grosseira para o caso do bocal cônico 

 

 

Figura 5.20 – Malha refinada para o caso do bocal cônico 
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6. RESULTADOS E DISCUSSÕES 

 

 

6.1. AVALIAÇÃO UNIDIMENSIONAL PRELIMINAR 

 

6.1.1. Pressão no interior da câmara de combustão 

 

 Para validação do modelo adotado serão comparadas duas condições tais 

quais apresentadas em Nieble (1996), o qual trabalhou fazendo a aproximação da 

variação de pressão no interior da câmara de combustão durante o processo de 

queima para o caso em regime permanente, com mesmas hipóteses aqui adotadas. 

Seu trabalho consistiu no ensaio de algumas geometrias de grão bem como 

condições da câmara de combustão no início deste processo para o caso de um 

motor-foguete para aplicações agrícolas. No presente estudo somente será levado 

em conta os casos ensaiados para um grão-propelente de cavidade cilíndrica 

 

6.1.1.1. Caso 1 

 

 Para este caso, serão considerado os dados apresentados na tabela 6.1. 

Tabela 6.1 – Dados para o caso 1 do modelo (Nieble, 1996) 

Parâmetro Valor 

Diâmetro da garganta do bocal (D2) 0,003 m 

Comprimento do grão-propelente (L) 1,4 m 

Pressão de combustão de projeto (Pc) 1250 psi 

a 4,1 x 10-7 

n 0,65 

Massa molar do combustível (M) 207 kg/kmol 

Continua 
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Conclusão da tabela 6.1 – Dados para caso 1 do modelo (Nieble, 1996) 

Densidade do propelente (ρcomb) 1300 kg/m3 

Razão de calores específicos (k) 1,1 

Temperatura de queima (Tc) 1700 K 

Incremento de tempo (s) 0,001 s 

Raio interno do grão-propelente 0,003 m 

Raio externo do grão-propelente 0,009 m 

 

 Como resultado da simulação para este caso, utilizando o código 

desenvolvido para Matlab conforme apresentado no apêndice B, obteve-se o gráfico 

apresentado na figura 6.1. 

 

 

Figura 6.1 – Comportamento da pressão no interior da câmara de combustão em função do tempo de 

queima do propelente 

 

 Comparando os resultados obtidos com aqueles apresentados em Nieble 

(1996), apresentado na figura 6.2, nota-se alguma variação no que diz respeito ao 

tempo para se chegar no pico de pressão no interior da câmara de combustão, 
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sendo no modelo adotado este mais rápido em cerca de 0,15 s, fruto das diferenças 

de abordagem na modelagem do sistema, tendo em vista que no caso considerado, 

resolveu-se uma equação diferencial ordinária não-homogênea enquanto em Nieble 

(1996) foi considerado um modelo já em regime permanente, negligenciando 

qualquer efeito a massa acumulada no interior da câmara de combustão enquanto 

se dá o processo. O pico de pressão é razoavelmente próximo em termos relativos, 

tendo em vista que no caso ensaiado este se dá em torno de 55 MPa enquanto no 

trabalho de Nieble (1996), 48 MPa. Novamente deve-se levar em conta as 

diferenças de abordagem na modelagem do fenômeno. No modelo adotado tomou-

se como parada o instante em que o escoamento deixa de ocorrer, isto é, quando a 

câmara de combustão passa a ter somente ar atmosférico em seu interior, o que 

ocorre em cerca de 0,9 s. 

 

 

Figura 6.2 – Resultado da variação da pressão no interior da câmara de combustão obtido por Nieble 

(1996) 

 

 Outra fonte de desvio para os valores dos resultados, além da questão de 

diferenças de modelo, está na conversão do parâmetro a para unidades do Sistema 
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Internacional de Unidades. Esta foi feita dividindo o valor apresentado em Nieble 

(1996) por uma constante que faz a conversão entre pounds per square inch para 

Pascal, o que pode ter incorrido em desvios em relação ao valor originalmente 

apresentado. 

 

6.1.1.2. Caso 2 

 

Para este caso, serão considerado os dados apresentados na tabela 6.2. 

 

Tabela 6.2 – Dados para o caso 2 do modelo 

Parâmetro Valor 

Diâmetro da garganta do bocal (D2) 0,003 m 

Comprimento do grão-propelente (L) 0,6 m 

Pressão de combustão de projeto (Pc) 1000 psi 

a 4,1 x 10-7 

n 0,65 

Massa molar do combustível (M) 207 kg/kmol 

Densidade do propelente (ρcomb) 1300 kg/m3 

Razão de calores específicos (k) 1,1 

Temperatura de queima (Tc) 1500 K 

Incremento de tempo (s) 0,001 s 

Raio interno do grão-propelente 0,005 m 

Raio externo do grão-propelente 0,015 m 

 

 Como resultado da simulação para este caso, utilizando o código 

desenvolvido para Matlab conforme apresentado no apêndice B, obteve-se o gráfico 

apresentado na figura 6.3. 
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Figura 6.3 – Comportamento da pressão no interior da câmara de combustão em função do tempo de 

queima do propelente 

 

 Novamente, comparando-se com a figura 6.4, o que se nota é concordância 

de forma, muito embora neste segundo caso o tempo de queima e a pressão 

apresentem desvios maiores, no caso, 0,3 s até chegar no pico da pressão da 

câmara que, neste caso está em 42 MPa no modelo adotado comparado a 31 MPa 

apresentado por Nieble (1996). Novamente a maior causa para o desvio está em 

conversão de unidades do parâmetro a e, principalmente, nas diferenças entre os 

modelos adotados. 
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Figura 6.4 – Resultado da variação da pressão no interior da câmara de combustão obtido por Nieble 

(1996) 

 

 Neste segundo caso, dado o maior volume da câmara de combustão 

acarretado pelo aumento do diâmetro externo, bem como presença de menores 

pressões iniciais, o que se tem é um tempo maior para a fuga completa dos gases 

de combustão, sendo esta processada em cerca de 1,2 s. 

 

6.1.2. Empuxo 

 

 Seguindo a equação (5.10), simulou-se o empuxo fornecido ao corpo devido a 

queima do propelente sólido, segundo as curvas ilustradas pelas figuras 6.1 e 6.3. 

Tal simulação foi realizada para diferentes razões de áreas de seção de saída e da 

garganta do bocal, supondo este de dimensões fixas, a fim de ilustrar o efeito da 

variação de área no número de Mach da seção de saída em um bocal convergente-

divergente já blocado, demonstrando que está maior velocidade de escape dos 

gases - produtos da combustão – implica em maiores empuxos. Tal unicidade de 
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número de Mach para uma dada razão de áreas, isto é, este permanece constante 

dado o bocal estar blocado, é demonstrada pela equação 

𝐴3

𝐴2
=

𝑀2

𝑀3
[
1 + (

𝑘 − 1
2 ) 𝑀3

2

1 + (
𝑘 − 1

2 ) 𝑀2
2

]

𝑘+1
2(𝑘−1)

 

Para escoamento de gases perfeitos, em regime permanente e sem perdas. 

 Analisando a equação (5.10) também se nota que, para uma dada razão de 

área fixa, a curva de empuxo deve ter a mesma forma que a de pressão, ou seja, há 

um pico de empuxo para uma dada geometria de bocal e condições de escoamento. 

 A figura 6.5 apresenta o empuxo para seis razões de áreas diferentes 

relativos ao caso 1 de simulação. Já a 6.6, para o caso 2. 

 

 

Figura 6.5 – Empuxo em função do tempo de queima para o caso de simulação 1 
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Figura 6.6 – Empuxo em função do tempo de queima para o caso de simulação 2 

 

 Da avaliação dos resultados, o que se tem é perfil concordante com aquele da 

pressão no interior da câmara de combustão, conforme já discutido. Também é 

notável um maior empuxo para uma maior razão de áreas, efeito este da maior 

velocidade de escoamento na seção de descarga do bocal, termo este multiplicativo 

na equação 5.10, o que acarreta em aumento da amplitude.  

Do exposto, nota-se que há concordância com relação ao apresentado na 

bibliografia, conforme pode ser visto para o perfil de um grão propelente tubular 

apresentado na figura 4.4, também ilustrada em Sutton (2004). Nela há um pico de 

empuxo em função do tempo, tal como obtido segundo equacionamento 

apresentado, com queda bastante acentuada após este, isto é, momento em que a 

pressão no interior da câmara começa a decrescer, momento este em que se tem o 

início de seu esvaziamento. 
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6.2. PROJETO BIDIMENSIONAL DO BOCAL CONVERGENTE-

DIVERGENTE 

 

6.2.1. Projeto da porção supersônica pelo método das características 

 

 O primeiro caso, representado pela figura 6.7 ilustra aquele apresentado por 

Anderson (2003), com os parâmetros listados na tabela 6.3. Tal caso assim como o 

que se segue tem como escopo garantir que o código utilizado está adequado. Em 

outras palavras, têm como função validar o código. 

 

Tabela 6.3 – Parâmetros (Anderson, 2003) 

Mach na saída (𝑀𝑠) 2,4 

Razão de calores específicos (𝑘) 1,4 

Altura da garganta (ℎ𝑖𝑛𝑖) 1 

Nº de características (𝑛) 7 

Ângulo inicial (𝜃𝑖𝑛𝑖) 0,375º 

 

 

Figura 6.7 – Bocal divergente com parâmetros fornecidos em Anderson (2003) 
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Tabela 6.4 – Dados calculados pelo programa segundo os valores de entrada da tabela 6.3 

Ponto 𝑲+ 𝑲− 𝜽 𝝂 𝑴 𝝁 𝒙 𝑦 

0 - - - - - - 0 1 

1 0 0,7500 0,3750 0,3750 1,0404 73,9804 0,2492 0 

2 0 6,7494 3,3747 3,3747 1,1922 57,0126 0,4540 0,3834 

3 0 12,7488 6,3744 6,3744 1,3073 49,9026 0,5261 0,5003 

4 0 18,7483 9,3741 9,3741 1,4133 45,0371 0,5826 0,5819 

5 0 24,7477 12,3738 12,3738 1,5158 41,2785 0,6325 0,6508 

6 0 30,7471 15,3736 15,3736 1,6173 38,1938 0,6793 0,7142 

7 0 36,7465 18,3733 18,2733 1,7191 35,5694 0,7244 0,7758 

8 0 36,7465 18,3733 18,3733 1,7191 35,5694 1,1708 1,3889 

9 -6,7494 6,7494 0 6,7494 1,3209 49,2077 0,7598 0 

10 -6,7494 12,7488 2,9997 9,7491 1,4263 44,5183 0,8998 0,1575 

11 -6,7494 18,7483 5,9994 12,7488 1,5285 40,8613 1,0118 0,2784 

12 -6,7494 24,7477 8,9991 15,7486 1,6300 37,8436 1,1127 0,3860 

13 -6,7494 30,7471 11,9988 18,7483 1,7320 35,2667 1,2086 0,4890 

14 -6,7494 36,7465 14,9986 21,7480 1,8355 33,0123 1,3028 0,5923 

15 -6,7494 36,7465 14,9986 21,7480 1,8355 33,0123 2,3334 1,7373 

16 -12,7488 12,7488 0 12,7488 1,5285 40,8613 1,0798 0 

17 -12,7488 18,7483 2,9997 15,7486 1,6300 37,8436 1,2279 0,1280 

18 -12,7488 24,7477 5,9994 18,7483 1,7320 35,2667 1,3638 0,2464 

19 -12,7488 30,7471 8,9991 21,7480 1,8355 33,0123 1,4955 0,3634 

20 -12,7488 36,7465 11,9988 24,7477 1,9412 31,0070 1,6268 0,4838 

21 -12,7488 36,7465 11,9988 24,7477 1,9412 31,0070 3,1916 1,9434 

22 -18,7483 18,7483 0 18,7483 1,7320 35,2667 1,4103 0 

23 -18,7483 24,7477 2,9997 21,7480 1,8355 33,0123 1,5814 0,1227 

24 -18,7483 30,7471 5,9994 24,7477 1,9412 31,0070 1,7499 0,2474 

25 -18,7483 36,7465 8,9991 27,7474 2,0499 29,1975 1,9209 0,3791 

26 -18,7483 36,7465 8,9991 27,7474 2,0499 29,1975 4,1300 2,1173 

27 -24,7477 24,7477 0 24,7477 1,9412 31,0070 1,7895 0 

28 -24,7477 30,7471 2,9997 27,7474 2,0499 29,1975 1,9983 0,1284 

29 -24,7477 36,7465 5,9994 30,7471 2,1622 27,5479 2,2135 0,2675 

30 -24,7477 36,7465 5,9994 30,7471 2,1622 27,5479 5,2194 2,2607 

31 -30,7471 30,7471 0 30,7471 2,1622 27,5479 2,2517 0 

32 -30,7471 36,7465 2,9997 33,7468 2,2787 26,0309 2,5173 0,1429 

33 -30,7471 36,7465 2,9997 33,7468 2,2787 26,0309 6,5170 2,3628 

34 -36,7465 36,7465 0 36,7468 2,4000 24,6247 2,8410 0 

35 -36,7465 36,7465 0 36,7468 2,4000 24,6247 8,0855 2,4039 
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 A figura 6.8 bem como a tabela 6.5 foram extraída de Anderson (2003) e 

trazem a geometria e propriedades do bocal de parâmetros análogos aos adotados 

para a solução apresentada nas figuras. 

 

Figura 6.8 – Curvas características de meio bocal plano (Anderson, 2003) 

 

Tabela 6.5 – Valores de cada ponto das características da figura 6.8 (Anderson, 2003) 
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 Do cômputo deste caso, pode-se notar que as linhas características tem 

distribuição semelhantes, entretanto, somente da análise destas não se pode chegar 

numa conclusão acerca da consistência dos cálculos, tendo em vista que não se 

sabe ao certo a precisão com a qual a figura 6.8 foi feita. A melhor alternativa é 

verificar os valores apresentados nas tabelas 6.3 e 6.5 para cada um dos pontos de 

encontro entre as linhas características do escoamento interno ao bocal. 

 É fácil notar a consistência de cada um doo cálculos realizados em 

comparação com aqueles informados por Anderson (2003). Nota-se que os desvios 

são na 3ª casa decimal e podem facilmente ser atribuídos aos arredondamentos 

realizados pelo MatLab durante a rotina de cálculo. Desta forma há indícios fortes de 

que o modelo proposto para o caso de um bocal plano está adequado para o 

posterior projeto do contorno do bocal divergente a ser utilizado no modelo de míssil 

proposto. 

 O caso que segue está descrito em Hodge (1995). Serão realizados todos os 

cálculos de forma a garantir completa consistência do programa computacional, já 

evidenciada pela comparação dos resultados obtidos face àqueles apresentados na 

bibliografia. Uma vantagem deste segundo caso em análise é o fato de o autor 

apresentar também as coordenadas de cada um dos pontos, permitindo mais um 

grau de comparação. A tabela 6.7 e a figura 6.9 apresentam os resultados obtidos 

com a simulação computacional proposta, enquanto a tabela 6.8 traz os valores dos 

ângulos notáveis, invariantes de Riemann e posição dos pontos fornecidos por 

Hodge (1995) 

 

Tabela 6.6 – Parâmetros (Hodge, 1995) 

Mach na saída (𝑀𝑠) 1.92 

Razão de calores específicos (𝑘) 1,4 

Altura da garganta (ℎ𝑖𝑛𝑖) 1 

Nº de características (𝑛) 7 

Ângulo inicial (𝜃𝑖𝑛𝑖) 0,075º 
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Figura 6.9 – Bocal divergente com parâmetros fornecidos em Hodge (1995) 

 

Tabela 6.7 – Dados calculados pelo programa segundo os valores de entrada da tabela 6.5  

Ponto 𝐾+ 𝐾− 𝜃 𝜈 𝑀 𝜇 𝑥 𝑦 

0 - - - - - - 0 1 

1 0 0,1500 0,075 0,0750 1,0101 81,9010 0,1436 0 

2 0 4,1501 2,075 2,0750 1,1357 61,7066 0,2961 0,4948 

3 0 8,1502 4,0751 4,0751 1,2205 55,0204 0,3418 0,5788 

4 0 13,1503 6,0751 6,0751 1,2963 50,4795 0,3754 0,6323 

5 0 16,1504 8,0752 0,0752 1,3680 46,9682 0,4039 0,6742 

6 0 20,1505 10,0752 10,0752 1,4375 44,0800 0,4295 0,7102 

7 0 24,1506 12,0753 12,0753 1,5057 41,6164 0,4534 0,7430 

8 0 24,1506 12,0753 12,0753 1,5057 41,6164 0,7620 1,1630 

9 -4,1501 4,1501 0 4,1501 1,2234 54,8226 0,6146 0 

10 -4,1501 8,1502 2,0000 6,1501 1,2991 50,3325 0,7164 0,1380 

11 -4,1501 13,1503 4,0001 8,1502 1,3707 46,8501 0,7929 0,2344 

12 -4,1501 16,1504 6,0001 10,1502 1,4401 43,9808 0,8583 0,3236 

13 -4,1501 20,1505 8,0002 12,1503 1,5083 41,5305 0,9177 0,3838 

14 -4,1501 24,1506 10,0002 14,1503 1,5759 39,3861 0,9736 0,4492 

Continua 
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Conclusão da Tabela 6.6 - Dados calculados pelo programa segundo os valores de entrada da 

tabela 6.5 

15 -4,1501 24,1506 10,0002 14,1503 1,5759 39,3861 1,7513 1,3560 

16 -8,1501 8,1502 0 8,1502 1,3707 46,8501 0,8424 0 

17 -8,1501 13,1503 2,0000 10,1502 1,4401 43,9808 0,9387 0,1012 

18 -8,1501 16,1504 4,0001 12,1503 1,5083 41,5305 1,0221 0,1867 

19 -8,1501 20,1505 6,0001 14,1502 1,5759 39,3861 1,0985 0,2644 

20 -8,1501 24,1506 8,0002 16,1504 1,6436 37,4762 1,1709 0,3379 

21 -8,1501 24,1506 8,0002 16,1504 1,6436 37,4762 2,2499 1,4350 

22 -12,1503 13,1503 0 12,1503 1,5083 41,5305 1,0520 0 

23 -12,1503 16,1504 2,0000 14,1503 1,5759 39,3861 1,1513 0,0877 

24 -12,1503 20,1505 4,0001 16,1504 1,6436 37,4762 1,2432 0,1688 

25 -12,1503 24,1506 6,0001 18,1504 1,7116 35,7510 1,3310 0,2468 

26 -16,1504 24,1506 6,0001 18,1504 1,7116 35,7510 2,7279 1,4937 

27 -16,1504 16,1504 0 16,1504 1,6436 37,4762 1,2659 0 

28 -16,1504 20,1505 2,0000 18,1504 1,7116 35,7510 1,3730 0,0825 

29 -16,1504 24,1506 4,0001 20,1505 1,7801 34,1783 1,4763 0,1631 

30 -16,1504 24,1506 4,0001 20,1505 1,7801 24,1783 3,2236 1,5370 

31 -20,1505 20,1505 0 20,1505 1,7801 34,1783 1,4955 0 

32 -20,1505 24,1506 2,0000 22,1505 1,8495 32,7304 1,6147 0,0817 

33 -20,1505 24,1506 2,0000 22,1505 1,8495 32,7304 3,7541 1,5648 

34 -24,1506 24,1506 0 24,1506 1,9200 31,3888 1,7504 0 

35 -24,1506 24,1506 0 24,1506 1,9200 31,3888 4,3316 1,5749 

 

 A despeito do valor inicial do número de Mach que possui um desvio e implica 

em desvios na posição dos primeiros pontos, todos os demais estão apresentados 

de forma bastante consistência no que diz respeito a aqueles calculados por Hodge 

(1995). A questão do primeiro número de Mach está relacionada a metodologia 

utilizada para seu cômputo através do método de Newton-Raphson que requereu 

um chute inicial. Desta forma se inadequado a raiz da função apresentada pode 

divergir em relação ao valor que se esperava. Conforme dito, entretanto, o desvio 

não foi significativo e permitiu obtenção de um bocal divergente de comprimento 

mínimo se não igual, bastante consistente com àquele apresentado na bibliografia. 
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Tabela 6.8 – Solução de Hodge (1995) (a definição de K+ e K- em Hodge é invertida quando 

comparada a Anderson, 2003) 

 

 É de alguma valia calcular as razões de área para este bocal tanto com a 

expressão já desenvolvida em Zucker (1977) bem como com os valores obtidos a 

partir da simulação computacional, assumindo o bocal com seções circulares, e 

verificar o quão próximos eles são. 

𝐴𝑠𝑎í𝑑𝑎

𝐴𝑔𝑎𝑟𝑔𝑎𝑛𝑡𝑎
=

𝑀𝑔𝑎𝑟𝑔𝑎𝑛𝑡𝑎

𝑀𝑠𝑎í𝑑𝑎
(

1 +
𝑘 − 1

2 𝑀𝑠𝑎í𝑑𝑎
2

1 +
𝑘 − 1

2 𝑀𝑠𝑎í𝑑𝑎
2

)

𝑘+1
2(𝑘−1)

 

 

A tabela 6.8 apresenta o resultado dos cálculos 



167 

 

 

Tabela 6.9 – Comparação da razão de áreas calculada para o caso unidimensional e bidimensional 

‘ Fórmula Zucker (1977) Calculado 

Anderson (2003) 2,4031 5,7787 

Hodge (1995) 1,5804 2.4803 

 

 Nota-se que há um grande desvio em relação aquele valor calculado para o 

caso unidimensional isentrópico e aquele para o caso bidimensional a partir de 

técnica que envolve a hipótese de escoamento potencial. Naturalmente espera-se 

que os valores calculados para o caso bidimensional sejam mais consistentes do 

que aqueles para o caso unidimensional dadas as simplificações demasiadas 

supostas para o cômputo do último, como por exemplo descontar os efeitos do 

contato das ondas de Mach com as paredes. Também vale ressaltar que o bocal 

unidimensional em nada garante um bocal de mínimo comprimento, mas tão 

somente um cálculo preliminar da razão de áreas para que o valor do número de 

Mach na saída seja atingido. 

 Tais análises permitem afirmar com boa segurança que o programa 

desenvolvido é geral para a geração de geometria e cômputo das propriedades 

internas de um bocal divergente de comprimento mínimo. Vale ressaltar, conforme já 

citado na revisão da bibliografia, que aa abordagem aqui utilizada é a mesma 

apresentada por Shapiro (1953) na qual se faz a separação do escoamento interno 

dentro do bocal tal como na análise de um fólio. Isto quer dizer que para a malha 

interna assume-se um escoamento irrotacional, isentrópico, isto é, potencial. 

Enquanto todos os efeitos viscosos e térmicos são investigados na camada limite 

aderida a parede interna do bocal. 
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6.3. ESCOAMENTO TRANSIENTE EM BOCAL QUASE-UNIDIMENSIONAL 

 

6.3.1. Validação do modelo 

 

 A fim de validar o modelo adotado para a solução do escoamento num bocal 

quase-unidimensional, conforme apresentado na seção 5.3 do presente relatório, 

simular-se-á o mesmo caso apresentado no capítulo 7 de Anderson (1995). Para 

este caso as condições iniciais estão listadas na tabela 6.10 junto com demais 

parâmetros de referência. 

 

Tabela 6.10 – Parâmetros do modelo apresentado por Anderson (1995) para um bocal quase-

unidimensional 

Condições iniciais 𝜌𝑖
0 = 1 − 0,3146𝑥 

𝑇𝑖
0 = 1 − 0,2314𝑥 

𝑉𝑖
0 = (0,1 + 1,09𝑥)√𝑇𝑖

0 

Comprimento do bocal 𝐿 = 3,0 𝑚 

Número de intervalos no comprimento 𝑛 = 30 

Razão de calores específicos 𝑘 = 1,4 

Variação da área 𝐴(𝑥) = 1 + 2,2(𝑥 − 1,5)2 

Número de iterações 1400 

Número de Courant 0,5 

  

 Antes de apresentar os resultados numéricos vale demonstrar que a solução 

é consistente em todos os pontos do domínio desde o transiente até chegar no 

regime permanente. As figuras 6.10, 6.11 e 6.12 ilustram, respectivamente, a 

temperatura, densidade e velocidade adimensionais em todos os pontos do domínio 

fluído adotado. 
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Figura 6.10 – Variação da temperatura adimensional em cada ponto do domínio fluído ao longo da 

simulação 

 

 

Figura 6.11 – Variação da densidade adimensional em cada ponto do domínio fluído ao longo da 

simulação 
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Figura 6.12 – Variação da densidade adimensional em cada ponto do domínio fluído ao longo da 

simulação 

 

 Dos gráficos apresentados nota-se que o regime permanente é de fato 

atingido em cada ponto da malha fluída, isto é representado pelas linhas horizontais 

contínuas e invariantes após os 6s. O transiente da densidade é bastante elevado 

para os nós da malha mais próximos do bocal, indicando que as condições iniciais 

adotadas não são tão próximas assim do que se espera em regime permanente, 

além de levar em consideração a inclusão das condições de contorno que, a cada 

iteração, alteram o valor das propriedades ao longo do escoamento. O fato de as 

condições iniciais divergirem um pouco do regime permanente permite visualizar 

que, de fato a solução para o problema adequa o escoamento ao longo do bocal até 

atingir um estado em que as propriedades são constantes. Isto valida a hipótese de 

que a solução proposta é válida para a simulação do problema de esvaziamento da 

câmara de combustão. 

 Expostas estas conclusões acerca do comportamento geral da solução ao 

longo do tempo, passa a ser possível comparar os dados obtidos com a simulação 

em comparação com aqueles tabulados em Anderson (1995). As tabelas 6.11, 6.13 

e 6.15 ilustram os resultados obtidos a partir do código para Matlab escrito no 

instante inicial, após o primeiro passo temporal e após 1400 passos de tempo, já as 

tabelas 6.12, 6.14 e 6.16 foram extraídas diretamente de Anderson (1995). 
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Tabela 6.11 – Resultados obtidos pelo autor a partir da simulação do caso exposto no capítulo 7 de 

Anderson (1995) para o instante 0 de simulação 

I x/L A/A* ρ/ρ0 V/a0 T/T0 p/p0 M Vazão 

1 0 5.950 1.000 0.103 1.000 1.000 0.103 0.610 

2 0.100 5.312 0.969 0.207 0.977 0.946 0.209 1.063 

3 0.200 4.718 0.937 0.311 0.954 0.894 0.318 1.373 

4 0.300 4.168 0.906 0.412 0.931 0.843 0.427 1.555 

5 0.400 3.662 0.874 0.511 0.907 0.793 0.536 1.635 

6 0.500 3.200 0.843 0.607 0.884 0.745 0.645 1.636 

7 0.600 2.782 0.811 0.700 0.861 0.699 0.754 1.579 

8 0.700 2.408 0.780 0.790 0.838 0.653 0.863 1.483 

9 0.800 2.078 0.748 0.877 0.815 0.610 0.972 1.364 

10 0.900 1.792 0.717 0.962 0.792 0.568 1.081 1.236 

11 1.000 1.550 0.685 1.043 0.769 0.527 1.190 1.108 

12 1.100 1.352 0.654 1.122 0.746 0.487 1.299 0.992 

13 1.200 1.198 0.623 1.197 0.722 0.450 1.408 0.892 

14 1.300 1.088 0.591 1.269 0.699 0.413 1.517 0.816 

15 1.400 1.022 0.560 1.337 0.676 0.378 1.626 0.765 

16 1.500 1.000 0.528 1.402 0.653 0.345 1.735 0.740 

17 1.600 1.022 0.497 1.463 0.630 0.313 1.844 0.743 

18 1.700 1.088 0.465 1.521 0.607 0.282 1.953 0.770 

19 1.800 1.198 0.434 1.575 0.584 0.253 2.062 0.818 

20 1.900 1.352 0.402 1.625 0.560 0.225 2.171 0.884 

21 2.000 1.550 0.371 1.671 0.537 0.199 2.280 0.960 

22 2.100 1.792 0.339 1.713 0.514 0.174 2.389 1.041 

23 2.200 2.078 0.308 1.750 0.491 0.151 2.498 1.120 

24 2.300 2.408 0.276 1.783 0.468 0.129 2.607 1.187 

25 2.400 2.782 0.245 1.811 0.445 0.109 2.716 1.234 

26 2.500 3.200 0.214 1.834 0.422 0.090 2.825 1.253 

27 2.600 3.662 0.182 1.852 0.398 0.073 2.934 1.234 

28 2.700 4.168 0.151 1.864 0.375 0.057 3.043 1.170 

29 2.800 4.718 0.119 1.870 0.352 0.042 3.152 1.051 

30 2.900 5.312 0.088 1.870 0.329 0.029 3.261 0.871 

31 3.000 5.950 0.056 1.870 0.306 0.017 3.382 0.625 
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Tabela 6.12 – Resultados expostos no capítulo 7 de Anderson (1995) para o instante 0 de simulação 
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Tabela 6.13 – Resultados obtidos pelo autor a partir da simulação do caso exposto no capítulo 7 de 

Anderson (1995) para o 1º passo de simulação 

I x/L A/A* ρ/ρ0 V/a0 T/T0 p/p0 M Vazão 

1 0 5.950 1.000 0.112 1.000 1.000 0.112 0.663 

2 0.100 5.312 0.955 0.212 0.972 0.928 0.215 1.073 

3 0.200 4.718 0.927 0.312 0.950 0.881 0.320 1.363 

4 0.300 4.168 0.900 0.411 0.929 0.836 0.427 1.542 

5 0.400 3.662 0.872 0.508 0.908 0.792 0.534 1.623 

6 0.500 3.200 0.845 0.603 0.886 0.748 0.640 1.629 

7 0.600 2.782 0.817 0.695 0.865 0.706 0.747 1.578 

8 0.700 2.408 0.789 0.784 0.843 0.665 0.853 1.489 

9 0.800 2.078 0.760 0.870 0.822 0.625 0.960 1.375 

10 0.900 1.792 0.731 0.954 0.800 0.585 1.067 1.250 

11 1.000 1.550 0.701 1.035 0.778 0.545 1.174 1.125 

12 1.100 1.352 0.670 1.113 0.755 0.506 1.281 1.008 

13 1.200 1.198 0.637 1.188 0.731 0.466 1.389 0.907 

14 1.300 1.088 0.603 1.260 0.707 0.426 1.498 0.827 

15 1.400 1.022 0.568 1.328 0.682 0.387 1.609 0.770 

16 1.500 1.000 0.531 1.394 0.656 0.349 1.720 0.740 

17 1.600 1.022 0.495 1.456 0.631 0.312 1.833 0.736 

18 1.700 1.088 0.459 1.514 0.605 0.278 1.945 0.756 

19 1.800 1.198 0.425 1.568 0.581 0.247 2.058 0.798 

20 1.900 1.352 0.392 1.619 0.556 0.218 2.170 0.858 

21 2.000 1.550 0.361 1.666 0.533 0.192 2.282 0.931 

22 2.100 1.792 0.330 1.709 0.510 0.168 2.393 1.012 

23 2.200 2.078 0.301 1.748 0.487 0.146 2.504 1.092 

24 2.300 2.408 0.271 1.782 0.465 0.126 2.614 1.164 

25 2.400 2.782 0.242 1.813 0.443 0.107 2.724 1.220 

26 2.500 3.200 0.213 1.838 0.421 0.090 2.834 1.252 

27 2.600 3.662 0.184 1.858 0.398 0.073 2.944 1.250 

28 2.700 4.168 0.154 1.874 0.376 0.058 3.055 1.206 

29 2.800 4.718 0.125 1.884 0.354 0.044 3.167 1.110 

30 2.900 5.312 0.095 1.889 0.332 0.032 3.280 0.955 

31 3.000 5.950 0.066 1.894 0.309 0.020 3.404 0.738 
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Tabela 6.14 – Resultados expostos no capítulo 7 de Anderson (1995) para o 1º passo de simulação 
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Tabela 6.15 – Resultados obtidos pelo autor a partir da simulação do caso exposto no capítulo 7 de 

Anderson (1995) para o 1400º passo de simulação 

I x/L A/A* ρ/ρ0 V/a0 T/T0 p/p0 M Vazão 

1 0 5.950 1.000 0.099 1.000 1.000 0.099 0.590 

2 0.100 5.312 0.998 0.112 0.999 0.997 0.112 0.594 

3 0.200 4.718 0.997 0.125 0.999 0.996 0.125 0.588 

4 0.300 4.168 0.994 0.143 0.998 0.992 0.143 0.591 

5 0.400 3.662 0.992 0.162 0.997 0.988 0.162 0.589 

6 0.500 3.200 0.987 0.187 0.995 0.982 0.187 0.589 

7 0.600 2.782 0.982 0.215 0.993 0.974 0.216 0.588 

8 0.700 2.408 0.974 0.251 0.989 0.963 0.252 0.588 

9 0.800 2.078 0.963 0.294 0.985 0.948 0.296 0.587 

10 0.900 1.792 0.947 0.346 0.978 0.926 0.350 0.587 

11 1.000 1.550 0.924 0.409 0.969 0.895 0.416 0.586 

12 1.100 1.352 0.892 0.485 0.956 0.853 0.496 0.585 

13 1.200 1.198 0.849 0.575 0.937 0.795 0.594 0.585 

14 1.300 1.088 0.792 0.678 0.911 0.722 0.710 0.584 

15 1.400 1.022 0.721 0.793 0.878 0.633 0.846 0.584 

16 1.500 1.000 0.639 0.914 0.836 0.534 0.999 0.584 

17 1.600 1.022 0.551 1.037 0.789 0.434 1.167 0.584 

18 1.700 1.088 0.465 1.155 0.737 0.342 1.345 0.584 

19 1.800 1.198 0.386 1.263 0.684 0.264 1.528 0.585 

20 1.900 1.352 0.318 1.361 0.633 0.201 1.710 0.585 

21 2.000 1.550 0.262 1.446 0.585 0.153 1.890 0.586 

22 2.100 1.792 0.216 1.519 0.541 0.117 2.065 0.587 

23 2.200 2.078 0.179 1.582 0.502 0.090 2.233 0.588 

24 2.300 2.408 0.150 1.636 0.467 0.070 2.394 0.589 

25 2.400 2.782 0.126 1.683 0.436 0.055 2.549 0.590 

26 2.500 3.200 0.107 1.723 0.408 0.044 2.696 0.591 

27 2.600 3.662 0.092 1.759 0.384 0.035 2.839 0.591 

28 2.700 4.168 0.080 1.789 0.362 0.029 2.972 0.593 

29 2.800 4.718 0.069 1.817 0.342 0.024 3.106 0.591 

30 2.900 5.312 0.061 1.839 0.325 0.020 3.225 0.596 

31 3.000 5.950 0.053 1.862 0.308 0.016 3.353 0.586 
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Tabela 6.16 – Resultados expostos no capítulo 7 de Anderson (1995) para o 1400º passo de 

simulação 

 

 

 Comparando os valores entre o caso simulado e os dados de Anderson nota-

se, se muito, variações na terceira casa decimal dos valores apresentados pelas 

tabela 6.11 a 6.14, atribuindo-se isso ao modo de truncamento numérico. Em regime 

permanente, caso das tabelas 6.15 e 6.16, os valores são idênticos para todos os 

pontos apresentados. Estas análise revela que o código escrito está de acordo com 

a teoria explicitada e captura bem o fenômeno apresentado. Com isto, procede-se 

para a validação do escoamento através da geometria apresentada na seção 5.4. 
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6.3.2. Aplicação a uma geometria de bocal especificada 

 

 Para o teste do esvaziamento da câmara de combustão, utilizou-se como 

combustível Ballistile (mistura de nitroglicerina com nitrocelulose) com as 

propriedades tais como encontradas em TU Delft (2014), listadas na tabela 6.17. 

Adicionalmente, considerou-se um bocal com a variação de área aproximada por um 

polinômio de 2º grau capaz de atingir Mach 3,4 nesta seção de descarga. O 

comprimento da câmara de combustão foi assumido como 2m e seu diâmetro de 

0,24m. Todos os parâmetros físicos estão listados na tabela 6.18. 

 

Tabela 6.17 – Dados da combustão de Ballistile (TU Delft, 2014) 

Propriedade Valor 

Temperatura adiabática de chama 3125 𝐾 

Densidade do propelente 1620 𝑘𝑔/𝑚3 

Taxa de queima (𝑎 98,1 𝑏𝑎𝑟) 21,4 𝑚𝑚/𝑠 

Massa molar dos gases de combustão 26,4 𝑘𝑔/𝑘𝑚𝑜𝑙 

Razão de calores específicos 1,215 

 

Tabela 6.18 – Dados físicos do problema 

Propriedade Valor 

Variação da área (adimensional) (232,1658𝑥2 − 31,6083𝑥 + 2) 

Comprimento da câmara de combustão 2 𝑚 

Diâmetro da câmara de combustão 0,24 𝑚 

Volume livre inicial 0,000635 𝑚3 

Comprimento do bocal 0,278 𝑚 

Nº de elementos na malha fluída 101 

 

 Uma dificuldade foi imposta pelo combustível. Como o dado de taxa de 

queima encontrado somente correspondia a pressão de 98,1 bar, foi necessário 

calcular a constante 𝑑𝑒 queima para este caso bem como assumir o coeficiente de 

pressão 𝑛 próximo aos dos demais combustíveis verificados. Vale ressaltar que isto 



178 

 

pode levar a incongruências tendo em vista que que esta estimativa leva em conta 

que os logaritmos de pressão e taxa de queima relacionam-se através de uma 

função de 1º grau para todas as pressões e temperatura, o que não corresponde à 

realidade, de caráter muito mais complexo e variável. 

 As figuras 6.13 a 6.15 ilustram a convergência da solução. Nota-se que há um 

rápido período transiente para enfim se chegar no regime permanente para cada 

uma das variáveis. Atribuem-se os grandes gradientes na acomodação da 

velocidade adimensionalizada pelo fato de os valores iniciais para esta terem sido 

adotados longe da solução em regime permanente. 

 

 

Figura 6.13 – Convergência da variável velocidade adimensional 
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Figura 6.14 – Convergência da variável temperatura adimensional 

 

 

Figura 6.15 – Convergência da variável densidade adimensional 

 

 Com isto, apresenta-se o gráfico da variação da pressão da câmara de 

combustão em função do tempo de queima através da figura 6.16. 
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Figura 6.16 – Variação da pressão no interior da câmara de combustão com o tempo 

 

 Da figura 6.16 nota-se que o perfil da variação da pressão está adequado 

quando comparado a bibliografia. Entretanto a pressão máxima atingida (7 bar) está 

aquém daquela típica de câmaras de combustão do tipo em análise. Duas hipóteses 

foram levantadas para explicar este comportamento: o grande volume da câmara de 

combustão que, quando esvaziada, bem como um mau dimensionamento do bocal 

que permite maior vazão mássica do que o necessário para manter algum gás no 

interior da câmara e assim acarretar um aumento de pressão. Outro ponto de 

discordância, na opinião do autor, é o tempo de queima. Como as pressões 

envolvidas são baixas, a expectativa seria de uma maior demora neste processo que 

dá cabo em menos de 0,5 s. A isto atribui-se as estimativas feitas para o coeficiente 

e expoente da taxa de queima do combustível, não necessariamente válidos para as 

pressões em questão ou para a temperatura da câmara de combustão adotada (𝑇𝑐 =

2500 𝐾).  
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6.4. DIMENSIONAMENTO DO BOCAL 

 

 O dimensionamento do bocal foi feito com base na aplicação do modelo 

proposto para o esvaziamento da câmara de combustão para os casos dos 

propelentes KNDX, KNSB Fino e KNSU, misturas mistura de KNO3 e Dextrose, 

KNO3 e Sorbitol e KNO3 e sacarose, respectivamente, com razão de oxidante e 

combustível de 65% e 35 %, respectivamente. Esta mesma bibliografia traz dados 

empíricos sobre a taxa de queima destes propelentes, listadas na tabela 6.19. 

 

Tabela 6.19 – Taxa de queima do KNDX (Nakka Rocketry, 2013) 

 a n 

Pressão (MPa) r (m/s) 

KNDX 

0,100 a 0,779 0,0024 2.10-6 

0,779 a 2.572 0,0076 -6.10-9 

2.572 a 5,930 0,0050 2.10-7 

5,930 a 8,502 0,0149 -2.10-8 

8,502 a 11,20 0,0084 5.10-8 

KNSB 

0,101 a 0,807 0,0029 2.10-6 

0,807 a 1,503 0,0116 -3.10-7 

1,502 a 3,792 0,0079 -5.10-9 

3,792 a 7,033 0,0055 1.10-7 

7,033 a 10,67 0,0104 7.10-9 

KNSU 

0.101 a 10.30 0,0082 9.10-8 

 

 

Tabela 6.20 – Propriedades do KNDX, KNSB fino e KNSU (Nakka Rocketry, 2013) 

Propelente 𝝆 (𝒌𝒈/𝒎𝟑) 𝒌 𝑴 (𝒌𝒈/𝒌𝒎𝒐𝒍) 𝑻𝒄 (𝑲) Composição 

KNDX 1879 1,131 42,39 1710 KNO3 e dextrose 

KNSB 1841 1,136 39,90 1600 KNO3 e sorbitol 

KNSU 1889 1,133 41,98 1720 KNO3 e sacarose 

 

 

 Definindo o diâmetro da garganta como 28,7 mm e um grão-propelente misto 

entre o tipo cigarro e cilindro vazado queimando tanto no interior quanto em suas 

extremidades, com comprimento de 610 mm, diâmetro externo de 76 mm e interno 
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de 20 mm, obteve-se a variação de pressão e de empuxo tal como observado pelas 

figuras 6.17 e 6.18. 

 

 

Figura 6.17 – Variação da pressão no interior da câmara de combustão 

 

 

Figura 6.18 – Variação do empuxo 
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 Destes resultados, tem-se que o número de Mach na saída é 2,518. 

Utilizando-se este bem como a razão de calores específicos e adotando o total de 70 

linhas características, o perfil da porção supersônica foi obtido conforme evidenciado 

pela figura 6.19. 

 

 

Figura 6.19 – Perfil do bocal supersônico 

 

6.5. ESTUDO DO EFEITO DA VISCOSIDADE EM BOCAIS 

CONVERGENTES-DIVERGENTES 

 

 Seguem os resultados obtidos a partir das simulações dos casos já discutidos 

acerca de geometrias distintas de bocais supersônicos para o míssil. Todas as 

simulações foram realizadas segundo as condições de contorno listadas na tabela 
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6.21, a exceção dos valores dos parâmetros turbulentos no tratamento do fluido 

como não-viscoso. 

 

Tabela 6.21 – Condições de contorno 

Região Condições de Contorno 

Entrada 𝑝𝑐𝑜𝑚𝑏 = 2500 𝑀𝑃𝑎 

𝑇𝑐𝑜𝑚𝑏 = 1350 𝐾 
𝐼𝑡𝑢𝑟𝑏 = 0,001% 

𝑙𝑡𝑢𝑟𝑏  = 0,0056 

Saída 𝑝𝑐𝑜𝑚𝑏 = 101,325 𝑘𝑃𝑎 

𝑇𝑐𝑜𝑚𝑏 = 300 𝐾 
𝐼𝑡𝑢𝑟𝑏 = 0,022% 

𝑙𝑡𝑢𝑟𝑏 = 0,01 𝑚 

Parede Parede adiabática e parada 

Simetria Somente meio bocal é simulado para reduzir o esforço 
computacional 

  

6.5.1. Perfis de velocidade 

 

 

Figura 6.20 – Perfil de velocidades para o caso do bocal cônico com fluido não viscoso e malha 

grossa 
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Figura 6.21 – Perfil de velocidades para o caso do bocal cônico com fluido não viscoso e malha fina 

 

 

Figura 6.22 – Perfil de velocidades para o caso do bocal cônico com fluido viscoso e malha grossa 



186 

 

 

 

Figura 6.23 – Detalhe do perfil de velocidades para o caso do bocal cônico com fluido viscoso e 

malha grossa 

 

Figura 6.24 – Perfil de velocidades para o caso do bocal cônico com fluido viscoso e malha fina 
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Figura 6.25 – Detalhe do perfil de velocidades para o caso do bocal cônico com fluido viscoso e 

malha fina 

 

Figura 6.26 – Perfil de velocidades para o caso do bocal curvo com fluido não viscoso e malha fina 
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Figura 6.27 – Perfil de velocidades para o caso do bocal curvo com fluido viscoso e malha fina 

 

Figura 6.28 – Detalhe do perfil de velocidades para o caso do bocal curvo com fluido viscoso e malha 

fina 
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6.5.2. Perfis de número de Mach 

 

Figura 6.29 – Perfil do número de Mach para o caso do bocal cônico com fluido não viscoso e malha 

grossa 

 

Figura 6.30 – Perfil do número de Mach para o caso do bocal cônico com fluido não viscoso e malha 

fina 
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Figura 6.31 – Perfil do número de Mach para o caso do bocal cônico com fluido viscoso e malha 

grossa 

 

Figura 6.32 – Detalhe do perfil do número de Mach para o caso do bocal cônico com fluido viscoso e 

malha grossa 



191 

 

 

Figura 6.33 – Perfil do número de Mach para o caso do bocal cônico com fluido viscoso e malha fina 

 

Figura 6.34 – Detalhe do perfil do número de Mach para o caso do bocal cônico com fluido viscoso e 

malha fina 
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Figura 6.35 – Perfil do número de Mach para o caso do bocal curvo com fluido não viscoso e malha 

fina 

 

Figura 6.36 – Perfil do número de Mach para o caso do bocal curvo com fluido viscoso e malha fina 
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6.5.3. Perfis de pressão estática 

 

Figura 6.37 – Perfil de pressão para o caso do bocal cônico com fluido não viscoso e malha grossa 

 

Figura 6.38 – Perfil de pressão para o caso do bocal cônico com fluido não viscoso e malha fina 
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Figura 6.39 – Perfil de pressão para o caso do bocal cônico com fluido viscoso e malha grossa 

 

Figura 6.40 – Perfil de pressão para o caso do bocal cônico com fluido viscoso e malha fina 
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Figura 6.41 – Perfil de pressão para o caso do bocal curvo com fluido não viscoso e malha fina 

 

Figura 6.42 – Perfil de pressão para o caso do bocal curvo com fluido viscoso e malha fina 
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6.5.4. Perfis de temperatura estática 

 

Figura 6.43 – Perfil de temperaturas para o caso do bocal cônico com fluido não viscoso e malha 

grossa 

 

Figura 6.44 – Perfil de temperaturas para o caso do bocal cônico com fluido não viscoso e malha fina 
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Figura 6.45 – Perfil de temperaturas para o caso do bocal cônico com fluido viscoso e malha 

grossa 

 

Figura 6.46 – Perfil de temperaturas para o caso do bocal cônico com fluido viscoso e malha fina 
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Figura 6.47 – Perfil de temperaturas para o caso do bocal curvo com fluido não viscoso e malha fina 

 

Figura 6.48 – Perfil de temperaturas para o caso do bocal curvo com fluido viscoso e malha fina 
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6.5.5. Alteração da geometria da garganta 

 

 As figura 6.49 apresenta uma simulação para a mesma geometria externa da 

porção divergente a exceção da porção que une a garganta a esta, agora com raio 

de curvatura maior. Os parâmetros de simulação continuam sendo os mesmos da 

tabela 6.21 exceto pela temperatura no interior da câmara de combustão, agora 

tomada como 1710 K o que implica no valor calculado das propriedades. 

 

 

Figura 6.49 – Contornos de número de Mach para a geometria ótima com raio de curvatura entre a 

garganta e porção divergente maior 
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6.5.6. Discussões 

 

 Antes de discutir os padrões encontrados para o escoamento no interior dos 

bocais, é necessário validar as soluções obtidas. Para tanto a figura 6.50, extraída 

de Östlund (2002) será utilizada. 

 

 

Figura 6.50 – Diferentes contornos de bocal e o escoamento no interior dos mesmos (Östlund, 2002) 

 

Da comparação da figura 6.48 com as demais, nota-se que há concordância 

completa entre os padrões observados para o escoamento tanto para o bocal curvo 

quanto para o cônico, bastando observar o comportamento dos perfis do número de 

Mach apresentados em relação aqueles da figura 6.50. 
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Havia uma preocupação em relação ao núcleo interno observado nas 

simulações para o bocal curvo, região esta de maior velocidade em relação a 

externa. Tal é uma característica também observada segundo o apresentado por 

Östlund (2002) tanto para o bocal de empuxo otimizado parabólico (TOP) tanto para 

o bocal com contorno otimizado para o empuxo (TOC). Esta região está de acordo 

com as previsões do método das características, entretanto ela se mostra ais longa 

do que aquela teórica. A explicação para tal reside no fato da expansão não estar 

ocorrendo exatamente na garganta, mas a partir de um ponto já na região da porção 

supersônica do bocal, efeito este oriundo da mudança de contorno necessária para 

suavizar a transição entre as regiões convergente e divergente a fim de evitar 

descolamentos da camada limite. A região externa é de fato aquela relacionada com 

a uniformização do escoamento a fim de garantir alinhamento do escoamento ao fim 

do bocal. Outra característica que deve ser levada em conta é o fato de não haver 

choque no interior do bocal, hipótese esta utilizada para a determinação da porção 

divergente ótima e verificado nas simulações bidimensionais mesmo no caso 

viscoso. A figura 6.51 traz uma foto do escoamento de um bocal no qual esta porção 

de expansão inicial rápida é visualizada com grande clareza. 

 

 

Figura 6.51 – Perfil do escoamento antes e após a separação de choque livre. Nota-se a presença da 

região central de expansão que permanece presente e de acordo com a verificação em simulações 

(Östlund, 2002) 

 

Não foi notada qualquer diferença em relação ao padrão de escoamento entre 

as malhas finas e grosseiras, garantindo que a solução independe da dimensão da 
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malha desde que a mais grossa já seja suficientemente adequada para capturar os 

efeitos do escoamento. O mesmo pode-se dizer da comparação entre os casos 

viscosos e não-viscosos nos quais o padrão global do escoamento entre os casos 

cônicos e curvos não varia de maneira significativa a não ser por uma fina camada 

limite que tem velocidade nula na parede e chega rapidamente ao valor da região 

interna ao bocal, isto dada a grande velocidade dos gases em escoamento na 

porção interna do bocal que evitam a formação de uma camada limite grossa. 

Foi feita uma simulação levando em conta os fenômenos externos eu 

acontecem após a ejeção dos gases do bocal para o caso da geometria cônica e 

com razão entre a pressão da câmara de combustão e externa igual a 10. O que se 

nota é a formação de espécies de bolhas que desprendem do escoamento principal 

do bocal após um choque externo. 

 

Figura 6.52 – Contornos do número de Mach de um jato deixando o bocal convergente-divergente 

cônico com razão de pressão 10 entre a entrada e a região ao longe 
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 Desta figura nota-se que, dada a pressão ambiente na região externa somada 

ao efeito do escoamento lento nas bordas do bocal há um afilamento da região de 

maior velocidade que tende a ficar tão fina até eventualmente desprender uma 

“bolha” que fica englobada no jato completo do escoamento. Este efeito, 

dependendo da razão de pressões tende a formar as formas de diamante 

observadas na figura 6.53, para o caso de um bocal com expansão fora do bocal, 

caso este observado em gradientes severos de pressão. 

 

 

Figura 6.53 – Bocal com expansão externa (Östlund, 2002) 

 

 A camada limite de temperatura é de sobremodo importante. Nota-se que há 

temperaturas elevadas em toda a região da parede, daí a necessidade da seleção 

adequada de materiais para a confecção do bocal, isto variando desde o necessário 

para estrutura, isolantes e, eventualmente, uso de fibra de carbono na região da 

garganta tanto por conta do efeito erosivo quanto pela temperatura do gás a fim de 

manter tal região íntegra, garantindo eficiência ao bocal.  

 Por fim, vale verificar que para um bocal cônico a expansão se dá de modo 

análogo àquele previsto pela teoria unidimensional, com as variações sendo, em 
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geral graduais e uniformes ao longo de todo bocal, diferentemente do observado 

para o caso do bocal em forma de sino. 

 A última conclusão que deve ser assinalada como importante é o efeito do 

raio de curvatura da seção que conecta a garganta ao bocal. Quanto maior esta, 

maior a zona de expansão inicial, consequentemente maior o ângulo da linha de 

Mach mais externa, garantindo velocidade maior em determinada região do bocal. 

Da figura 6.49 nota-se esta clara diferença entre a zona de expansão inicial em 

relação aos demais bocais sino apresentados. Enquanto nos primeiros a zona de 

expansão inicial se restringe até o interior do bocal com a linha de Mach final tenho 

somente sua reflexão para fora do bocal, a geometria apresentada em 6.49 com 

maior raio de curvatura não tem, sequer, esta zona de expansão inicial 

completamente no interior do bocal. 
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7. CONCLUSÃO 

 

 

 Do apresentado, o que se nota é que o propelente sólido é fundamental na 

determinação do sistema de propulsão, tendo em vista que possibilita a obtenção de 

um perfil de empuxo adequado para um dado fim. Da observação das características 

de queima, nota-se que há grandes pressões e temperaturas envolvidas no 

processo, acarretando na necessidade de estrutura adequada para que tais 

solicitações mecânicas e térmicas não culminem no colapso do dispositivo. 

 Do modelo proposto para o cálculo da pressão de combustão no interior da 

câmara, levando em conta a variação temporal desta conforme há a queima do 

grão-propelente, obteve-se perfil de curva adequado quando comparado  a 

bibliografia consultada, entretanto os valores numéricos obtidos possuem desvios 

em relação ao exposto em Nieble (1996). Apurando-se as diferenças, estipula-se 

que estas são oriundas dos diferentes modelos utilizados, isto é, enquanto Nieble 

(1996) se vale de um modelo para regime permanente, aqui se optou por resolver 

numericamente a equação diferencial ordinária que rege a variação da propriedade 

ao longo do tempo, através do método de Runge-Kutta de 4ª ordem, para o caso 

análogo ao determinado em Sutton (2001), considerando um bocal com escoamento 

em regime permanente e isentrópico, hipóteses também utilizadas por Nieble (1996). 

Após o término da combustão, processou-se o escoamento tal qual um tanque 

esvaziando, até o ponto em que o interior deste está completamente ocupado por ar 

atmosférico, no caso, considerando ao nível do mar (~100 kPa). 

 Uma avaliação do empuxo foi feito para diferentes razões de áreas para o 

bocal considerado. O que se notou foi concordância com relação a curva de 

pressão, tendo em vista o caráter diretamente proporcional desta com relação a tal 

força. Notou-se também um aumento no empuxo acarretado pelo aumento da área 

de saída do bocal em relação a da garganta, demonstrando o efeito que uma 

aceleração mais vigorosa dos gases tem, tendo em vista que, da equação da 

quantidade de movimento, uma maior velocidade de saída destes para uma vazão 

constante (dada a blocagem do bocal) acarreta em maior força no volume de 
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controle considerado, neste caso, dado pelo bocal que o transmite a estrutura do 

míssil ou foguete.  

 Para uma garganta de diâmetro 28,7 mm utilizando KNDX e KNSB fino como 

combustível, nota-se que é possível ter uma pressão interna razoável dentro da 

câmara de combustão (pico de 2,5 MPa) com velocidade dada por um número de 

Mach igual a 2,518 na saída, fornecendo pelo método das características um bocal 

ótimo de comprimento de aproximadamente 230 mm e diâmetro da porção mais 

externa de 143 mm. Com esta geometria gerou-se malhas para a simulação do 

escoamento viscoso e comparação com uma geometria cônica da região de 

descarga do bocal. 

 Das simulações bidimensionais notou-se que o efeito da viscosidade não é 

demasiadamente pronunciado no interior do bocal, garantindo que a aproximação 

invíscida usual é bastante razoável para este caso de altas velocidades de 

escoamento dado que não há possibilidade de formação de camada limite mais 

grossa. O bocal curvo também apresentou uma característica interessante no que 

diz respeito a existência da região de expansão inicial prevista pelo método das 

características, entretanto mais longa dada a mudança de geometria na região da 

garganta com escopo de suavizar o contorno. Da comparação destes resultados 

com aqueles apresentados em Östlund (2002), nota-se boa compatibilidade dos 

padrões globais do escoamento ainda quando comparado a dados reais. Por fim, 

vale ressaltar as grandes diferenças entre os padrões de escoamento entre um 

bocal de geometria ótima com relação aquele de geometria cônica simples (tal como 

de um V-2), enquanto este último atua de maneira similar as previsões 

unidimensionais, o primeiro já apresenta padrões de escoamento mais complexos. 
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APÊNDICE A – PROJETO DO CONTROLADOR 

 

 

A.1. OBSERVABILIDADE E CONTROLABILIDADE 

 

A.1.1.. Análise de controlabilidade 

 

 Para que os métodos de controle sejam aplicáveis, é necessário que o sistema 

seja controlável, isto é, dado um estado inicial, existe uma lei de controle u tal que ela 

leve o sistema do estado inicial até qualquer estado final num intervalo finito de tempo, 

logo, é necessário que todos os estados sejam atingíveis. Para um sistema linear 

invariante no tempo (𝑥̇ = 𝐴𝑥 + 𝐵𝑢, 𝑦 = 𝐶𝑥 + 𝐷𝑢), é possível verificar sua 

controlabilidade se, e somente se, a matriz de controlabilidade 𝑄 =

 [𝐵 𝐴𝐵 𝐴2𝐵 … 𝐴𝑛−1𝐵] tenha posto (número de linhas linearmente 

independentes) igual à dimensão do sistema. 

 No presente caso, a matriz de controlabilidade foi construída numericamente a 

partir do comando ctrb do Matlab. Posteriormente, comparou-se a dimensão do 

sistema com o posto de Q computando o valor de length(A) – rank(Q). Com os valores 

adotados o sistema é controlável, necessidade para aplicação dos métodos de 

controle. 

 

A.1.2. Análise de observabilidade 

 

 Uma vez que não é possível medir fisicamente todas as variáveis de estado em 

todos os instantes de tempo, deve-se utilizar um algoritmo de observador linear para 

se estimar o vetor de estados em todo instante de tempo. Para que esta 

implementação seja válida, é necessário garantir que o sistema seja observável. Para 
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tanto, é necessário que, dado o vetor de observações y e o vetor de entradas u, seja 

possível obter o vetor de estados x, em cada instante de tempo. Como se trata de um 

sistema linear invariante no tempo, prova-se a observabilidade se, e somente se, o 

posto a matriz 𝑁 = [𝐶𝑇 𝐴𝑇𝐶𝑇 (𝐴𝑇)2𝐶𝑇 … (𝐴𝑇)𝑛−1𝐶𝑇] for igual à ordem do 

sistema, ou, equivalentemente, se o número de linhas linearmente idependentes for 

igual à ordem do sistema.  

 Novamente, a matriz de observabilidade foi computada numericamente através 

do comando obsv do Matlab. A partir desta, por meio da comparação de seu posto 

com a dimensão do sistema (ordem) a partir da diferença length(A) – rank(N). Para os 

dados utilizados o sistema não é observável, requerendo a utilização de um 

observador de Lyapunov para aplicação do controle. 

 

A.2. SÍNTESE DO REGULADOR 

 

A.2.1. Alocação de polos 

 

 O escopo deste método de síntese é, a partir dos polos desejados para a 

dinâmica do sistema, sejam eles para torna-lo estável ou, também, garantir 

determinada resposta desejada, determinar uma matriz de ganhos [𝐾] tal que, 

segundo uma lei de controle do tipo: 

𝑢 = −𝐾𝑥 

Determinar uma nova matriz dinâmica com os novos polos adequados a resposta que 

se espera do sistema. 

𝑥̇ = (𝐴 − 𝐵𝐾)⏟      
𝐴𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑒

𝑥 

 Não se acertou todos os parâmetros do sistema dinâmico para uma correta 

síntese do controlador, entrementes, utilizando alguns dados fornecidos por Özkan 

(2005) e assumindo todos os coeficientes aerodinâmicos como unitários, é possível 
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simular o sistema dinâmico linearizado, no caso em questão instável, conforme 

avaliado pelos polos com parte real positiva. Desta forma, a partir da imposição de 

polos de malha fechada negativos é possível, notar que o código utilizado para a 

simulação é funcional, requerendo somente a obtenção de parâmetros precisos para 

o modelo em estudo a fim de sintetizar adequadamente o controlador. 
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 As figura A.1 e A.2 demonstram as saídas de cada um dos estados, conforme 

convencionado pela equação (5.152) para uma entrada impulso unitário e degrau 

unitário, respectivamente, aplicadas a cada uma das entradas de controle (deflexões 

das superfícies de controle). O que se nota é que o sistema é instável dada a 

divergência dos parâmetros com a aplicação das entradas. 

 As figura A.3 e A.4, por sua vez, demonstram a resposta dos mesmos sistemas 

as mesmas entradas agora com aplicação do controle por alocação de polos. Nota-se 

que todas as variáveis tendem a um valor constante ao longo do tempo após um 

período transiente de acomodação.  

 

A.2.2. Regulador Linear Quadrático 

 

 Diferentemente do método da alocação de polos, o Regulador Linear 

Quadrático tem como forma de fornecer a matriz de ganhos a determinação de um 

índice de minimização dado, genericamente, por: 

 

𝐼 = ∫ [𝑥𝑡(𝑡)𝑄(𝑡)𝑥(𝑡) + 𝑢𝑡(𝑡)𝑅𝑢(𝑡)]𝑑𝑡
𝑇

𝑡

 

 

Com 𝑄 e 𝑅 matrizes de ponderação dos estados e das entradas, necessárias para 

determinação da matriz de ganhos ótima, obtida a partir da solução da equação 

algébrica de Riccati quando as matrizes dos estados (𝐴) e das entradas (𝐵) não 

variam com o tempo, caso este aqui abordado. Apresentam-se, nas figura A.5 e A.6 

resultados de simulações em malha fechada utilizando a matriz de ganhos ótima. 

Novamente, dada a adoção de parâmetros não finais ao sistema dinâmico, tidos 

meramente como exemplo de aplicação, estes resultados devem ser tomados como 

indicativos da funcionalidade do código implementado, requerendo ainda uma melhor 

determinação dos parâmetros. 
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A.3.2ª SÍNTESE DE REGULADOR 

 

A.3.1. Polos do sistema em malha aberta e malha fechada 

 

 As simulações aqui realizadas têm como parâmetros de massa do míssil e 

comprimento, 18 kg (sem combustível) e 1 m de comprimento e 150 mm de diâmetro 

externo com dois jogos de superfícies aerodinâmicas sendo o controle realizado pelas 

superfícies de controles traseiras. Vale ressaltar, novamente que não foram possíveis 

se determinar os coeficientes aerodinâmicos tais como apresentados, desta forma as 

simulações a serem apresentadas não tem qualquer caráter físico realístico mais tão 

somente exemplificativo de que se é possível realizar a síntese de um regulador para 

o problema proposto com a dinâmica deduzida neste trabalho. A estimação dos 

coeficientes aerodinâmicos foi toda feita com base no com senso, sendo menores os 

coeficientes que dizem respeito a dinâmica longitudinal do mesmo (por exemplo o 

coeficiente de arrasto) e os demais significativamente maiores. As propriedades 

geométricas (momentos e produtos de inércia) foram estimados a partir do modelo 

tridimensional em CAD. As figuras A.7, A.8 e A.9 trazem os polos e zeros do sistema 

em malha aberta e com alocação de polos e os obtidos a partir da síntese via regulador 

linear quadrático com ponderação maior para a velocidades angulares e de atuação. 
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Figura A.7 – Polos em malha aberta (notar que o sistema é instável devido a existência de dois polos 

com parte real positiva) 

 

 

Figura A.8 – Polos obtidos por alocação de polos (notar que há um polo muito a esquerda com 

dinâmica rápida enquanto todo o sistema tem resposta bastante lenta) 
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Figura A.9 – Polos obtidos por LQR  (notar que há um polo muito a esquerda com dinâmica rápida 

enquanto todo o sistema tem resposta bastante lenta) 

 

A.3.2. Simulação do comportamento do sistema a uma subida 

 

 Assumindo como zero todas as condições de equilíbrio e forçando por 10 

segundos a arfagem no sentido de subida do míssil, apresentam-se nas figuras que 

seguem os resultados obtidos a partir do controle utilizado. 
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Figura A.10 – Ângulo de arfagem por LQR 

 

 

Figura A.11 – Ângulo de arfagem por alocação de polos 
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Figura A.12 – Velocidade angular de arfagem por LQR 

 

Figura A.12 – Velocidade angular de arfagem por alocação de polos 
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Figura A.12 – Velocidade na direção z por LQR 

 

 

Figura A.12 – Velocidade na direção z por alocação de polos 
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