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RESUMO

O presente trabalho tem como escopo fornecer um método para o projeto do
sistema de propulsdo e de controle de misseis balisticos. Para tanto, incialmente
desenvolve-se toda a teoria necessaria para o projeto do bocal, no caso
bidimensional, baseando-se nos métodos das caracteristicas para determinacdo do
perfil para o comprimento minimo, bem como na solu¢do das equagfes diferenciais
que regem o fendbmeno bidimensionalmente e quasi-unidimensionalmente. O
primeiro tem o fim de avaliar o efeito da camada limite na geometria e determinacéo
de materiais no bocal, o segundo representar a dindmica de escape dos gases de
maneira adequada e simplificada. Também é feita aluséo ao processo de combustédo
de combustiveis solidos a fim de se determinar a temperatura na camara de
combustdo bem como a sua dinamica de queima, necessaria para estimar o empuxo
fornecido. Por fim, no que se refere ao sistema de propulsdo, simulacdes
bidimensionais considerando escoamento turbulento também foram feitas. A
aplicacdo dos métodos por meios computacionais é feita e seus resultados validados
em comparacdo com outros apresentados na bibliografia. Quanto ao controle,
incialmente € feito um modelo dindmico do missil e em seguida todo o
desenvolvimento da sintese do controlador de tal forma que o artefato mantenha-se

na trajetéria pré-determinada, rejeitando disturbios ao longo do caminho.

Palavras-chave: Fluidos compressiveis. Bocal bidimensional.. Método das

caracteristicas. Combustdo. Misseis. Dindmica dos Fluidos Computacional.



ABSTRACT

This report aims to provide a method to design the propulsion and control
systems for a ballistic missile. For this purpose, initially the whole theory which
serves as background for the nozzle design is reviewed based on the characteristics
and hodograph methods. Allusion to combustion is also provided since it is of the
utmost importance to determine the temperature inside the combustion chamber as
well as its burn dynamics provides means to evaluate the maximum thrust to be
provided. The computational simulations of the methods for the nozzle design are
made and its results are compared to the ones found on the bibliography in order to
validate the models. Still considering the propulsion system, turbulent bidimensional
flow through the nozzle were also simulated for the sake of studying differences
among different geometries. Concerning the control, what is sought is the
maintenance of a pre-described trajectory, rejecting all the disturbances during the
movement, hence a dynamic model is presented and based on it all the control
synthesis is made.

Keywords: Compressible fluids. Bidimensional nozzle. Characteristics method.
Combustion. Missiles. Computational Fluid Dynamics.
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1. INTRODUCAO

Misseis sdo importantes e estratégicos dispositiovos de defesa amplamente
difundidos no globo, utilizados por 6rgdo de defesa de todos as na¢Bes do mundo.
Algumas séo suas configuracdes e tipos podendo-se citar misseis de cruzeiro, que
dispensam quaisquer esforcos de comando, sendo pilotados automaticamente; e
também misseis estratégicos que podem ser despejados de aeronaves atingindo o
solo ou mesmo lancados a partir do silos, tal como os misseis balisticos, objeto de

estudo do presente trabalho.

Em geral tais artefatos possuem um sistema de propulsdo tal qual o de
foguetes, isto €, simplificadamente uma camara de combustdo e um bocal, por onde
0s gases oriundos do processo de combustao sédo acelerados, fornecendo o empuxo
necessario para decolagem e possibilidade de atingir o alvo especificado. O
combustivel pode ser liquido ou solido, sendo o primeiro de projeto bem mais
complicado dada a necessidade de bombeamento de comburente e combustivel de
maneira dosada de acordo com as necessidades operacionais desejadas. O
combustivel sélido possui caracteristicas de projeto bastantae simplificadas além de
possibilidade de controle do processo de combustdo dado tanto pela geometria do
grao-propelente como pelo controle do bocal, possibilitando alguma autonomia no

gue tange o controle da taxa de quiema e de posicao.

Todos estes misseis possuem um sistema de controle, seja ele
completamente embracado, como no caso de um missil balistico (Siouris, 2004) cujo
sistema de navegacao inercial; ou controlado a distancia através de uma central.
Naturalmente ha necessidade de sensores e atuadores para que tal seja possivel,
bem como, no caso de misseis balisticos, determinacdo prévia da trajetoria a fim de
fornecer informacgdes relevantes para a determinacdo do sistema de propulséo, tal

COMO empuxo necessario.

Para o caso especifico de misseis balisticos, alguns aspectos devem ser
levados em consideracdo tendo em vista seu cararter dificultador no processo de

sintese ndo controlador, sejam eles a variagdo de massa no processo de decolagem
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e 0s varios ambientes no qual este dispositivo transita, desde um ambiente
atmsoférico até fora da atmosfera, sendo necessario considerar estas interfaces e

seus efeitos quanto aos modelos a serem considerados.

O presente trabalho visa modelar um sistema de propulsdo para um missil
tatico, levando em conta a queima de combustivel sélido e escoamento
compressivel através de um bocal, sendo este feito de maneira genérica a fim de
possibilitar o estudo de uma variada gama de configuracbes que eventualmente
podem levar a rresultados anélogos no que tange o empuxo necessario gerado.
Também serd apresentada a sintese de um regulador para um fim especifico, sendo

necessario o equacionamento de modelos dinamicos, sensores e atuadores.
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2. RESUMO E OBJETIVOS DO PROJETO

O presente projeto diz respeito ao projeto de alguns dos subsistemas tipicos
de um missil. Estes s@o o sistema de propulsédo e o sistema de controle, essenciais

para o fim de tal dispositivo.

Tal tema de trabalho foi escolhido segundo sua abrangéncia no que diz
respeito a sua multidisciplinaridade segundo os temas tratados durante a graduacao
em engenharia mecéanica. Para a realizacdo de tal € necessario aplicacdo de
conhecimentos relacionados a grande area térmica, principalmente aqueles
relacionados ao escoamento de fluidos compressiveis e processos de combustéo.
Além destes, o modelo matematico da dinamica envolve algum conhecimento de
mecanica vetorial ou variacional bem como alguns principios de escoamento externo
para a determinacédo de for¢cas de natureza aerodinamica. A aplicacao da teoria de
controle também é algo ser observado tendo em vista seu carater essencial para tais

dispositivos, sendo esta uma disciplina de importancia para a graduacao.

A adocéao deste tema também visa possibilitar a aprendizagem de conceitos e
teorias de interesse do autor e que ndo estdo inseridas no contetdo do curso de
graduacdo. O aprofundamento em alguns temas de interesse também é um fator
determinante, sendo em especial a abordagem bidimensional de escoamentos
compressiveis um interesse particular do autor, tema este ndo abordado no curso de

escoamento compressivel ministrado em nivel de graduacao.

Quanto ao escopo do trabalho, o que se pretende é fornecer um ferramental
matematico para a avaliacgdo do sistema de propulsdo tipico de foguetes,
possibilitando calculos de empuxo, taxa de queima de combustivel, pressdo no
interior da camara de combustdo, dentre outros parametros, para casos genéricos.
Adicionalmente, deseja-se fornecer meios ou metodologia para a sintese de

sistemas de controle para misseis de tal natureza.
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3. ORGANIZACAO E DESENVOLVIMENTO

O trabalho como um todo pode ser dividido em trés grandes partes: sistema
de propulsdo, sistema de controle (ou de agdo. Cada um serd desenvolvido em
tempos distintos, mas com intercomunicacéo, principalmente entre a propulsdo e o
controle, tendo em vista uma dependéncia clara do segundo em relacdo ao primeiro
na etapa de decolagem até o escape da atmosfera. Também o sistema de carga
explosiva com o sistema de controle, tendo em vista que deve haver um momento

exato (o de impacto) no qual tal explosivo deve detonar.

O primeiro ciclo de trabalho envolvera o equacionamento e simulacdo de um
sistema de propulséo tipica de foguetes para o artefato em gquestdo. Para tanto
alguns requisitos bésicos devem ser levados em consideracdo para uma efetiva
modelagem de tal sistema. Em principio, uma avaliagdo acerca do combustivel
sélido é de fundamental importancia tendo em vista que este governa a pressao de
gases de combustdo no interior da camara de combustdo, caracteristica que tem
influéncia direta no desempenho deste subsistema fundamental. Desta forma,
incialmente uma revisdo bibliografica acerca do assunto serd feita, levantando, a
principio, aspectos basicos de um combustivel sélido dentre os quais se destacam
os formatos de gréos e sua influéncia no processo de combustao; taxa de queima e
sua relagdo com a pressdao do interior da camara de combustdo; processo de
combustdo de um combustivel sélido para variadas composi¢des, avaliando-a
qualitativamente e quantitativamente, tracando paralelos entre os diferentes
combustiveis existentes. Também um levantamento acerca das tensées no grao
bem como processo de transferéncia de calor para o invélucro também devem ser

abordados a titulo de conhecimento.

Concomitantemente ao levantamento de tais dados, uma avaliacdo das taxas
de combustdo para algumas geometrias e composicoes diferentes de combustivel
sera feita a partir de simulagdo numérica, levantando gréaficos e comparando-os no
que diz respeito, principalmente, a pressdo no interior da camara de combustéo.

Inicialmente, levantar-se-4& um modelo simples de motor a partir da associacao da
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expresséo para determinagao da pressao no interior da camara de combustdo dada
a taxa de queima do combustivel e um bocal unidimensional, avaliando
guantitativamente o empuxo gerado bem como pressfes e temperatura no bocal
segundo a queima do combustivel. Pretende-se ter estimativas genéricas com este
modelo, sofisticando-0 numa etapa subsequente do projeto. Por fim, pretende-se
fazer, ainda nesta primeira etapa do projeto, levantamentos quantitativos da
combustdo destes combustiveis no que diz respeito ao calor envolvido no processo

de reacéo.

Conforme supracitado, o modelo inicial de propulsor deve ser sofisticado a fim
de se obter melhores estimativas acerca do empuxo a ser fornecido pelo sistema,
bem como melhor avaliacdo de suas caracteristicas como um todo. Para tanto um
modelo de bocal serd avaliado a luz da andlise bidimensional de escoamentos de
fluidos compressiveis, tal como descritos em Shapiro (1953) e Zucrow (1948). Para
tanto, inicialmente levantar-se-a tal bibliografia, fazendo alguma revisdo sobre e em
seguida os conceitos serdo aplicados de forma bastante genérica, fornecendo
alguma ferramenta computacional que permita a analise de varias condicdes de
escoamento a fim de facilitar o processo de definicdo do sistema propulsor para a

sintese de um controlador para um caso especifico.

Para o fim desta analise do sistema de propulsdo, uma avaliacdo da
transferéncia de calor no bocal e na camara de combustdo sera feita a fim de
possibilitar o fornecimento de estimativas razoaveis para uma eventual selecdo de
material para 0 conjunto que possa resistir a tais solicitacfes térmicas, a principio
julgadas bastante significativas. Naturalmente ndo somente este efeito sera
determinante para tal selecdo, entretanto no que tange ao estudo termodinamico de

um missil balistico, que € o que se pretende, tais sdo de fundamental importancia.

Apés a conclusdo da modelagem de maneira genérica do sistema de
propulséo, isto €, confeccdo de rotinas de simulacdo parametrizadas de forma a
possibilitar a aplicagdo aos mais variados conjuntos de dados, passar-se-4 a
determinacao do sistema de controle. Neste momento algumas decisfes serao de
fundamental importancia, principalmente aquela relacionada ao como se dara a
atuacao do sistema de controle. Algumas possibilidades surgem, conforme ja visto

em Siouris (2004) e Sutton (2001), tais como controle por meio de espécie de flaps
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nas aletas de estabilizacdo ou ainda, o que possibilita maior flexibilidade de controle,
segundo Siouris (2004), a atuacdo se dar no proprio bocal por controle da vazéo
massica e pelo movimento do bocal segundo direcdes especificas a fim de controlar

a direcdo do escoamento.

Sabida a atuacdo e determinados 0s sensores necessarios para o sistema de
navegacao inercial tipico de um missil, proceder-se-4 com a determinacao de alguns
requisitos basicos para a caracterizagdo do dispositivo, dentre eles citam-se a
massa, dimensfes, empuxo necessario — 0 que possibilitara a determinacdo da
geometria e do combustivel —, avaliacdo das forcas aerodinamicas atuantes,
dependentes da geometria do modelo, dentre outros. Com estes dados é possivel
proceder com a modelagem dinamica do artefato, isto €, com a determinacdo das

equacdes que regem seu movimento.

Um cronograma completo e atualizado das atividades é fornecido na figura
3.1



22

|eul4 oedejuasaldy
oedejuasaldy .|

|
|

obiuy o7
0By oL

13150d o
13150d ol

0UOIE[3Y o9
OUOIBI3Y o5

0UOIEIFY o

0UQIE|Y €

OUOIERY of

ouge|dy ol

Sa0lenwis

JOPE|01}U0d 0p 03alolg

opnis3

S Sjonu0)

sagde|nwig

esiweulq wabejapopy

10]Ed Bp eIdUIBSuURT]

0|3po

opnisg

|BuoISUaWIpIg

Figura 3.1 — Cronograma do projeto

|EUOISUBWIPIUN

exog

0B]SNQLU0D ap BIEWED

0B}SNQUI0)

0BI5) Op 0jeWI0]

ewianb ap edlweulg

SOPI|OS SI2ASNQIOY)

oesindoid ap ewsajsis op wabejapop

ooyeibol|qig cjuawejueaa

zap | Aou mo | 1es obe |nf unl “lew 1qe T jew A9} uel | zep | Aou ejaie]




23

4. REVISAO BIBLIOGRAFICA

4.1. COMBUSTIVEIS SOLIDOS

4.1.1. Aspectos gerais

Combustiveis solidos sdo alternativa aos combustiveis liquidos para a
propulsdo de foguetes e misseis, apresentando a vantagem de serem
construtivamente mais simples tendo em vista o menor nimero de componentes na
construcdo do sistema de propulsdo. Este, em geral, € composto por uma camara de
combustdo na qual o gréo-propelente € inserido e um bocal convergente-divergente
utilizado para acelerar os gases oriundos do processo de combustdo, possibilitando,
por meio do principio da conservacao da quantidade de movimento, gerar uma forca
de empuxo que permite a movimentacdo do artefato. A figura 4.1 ilustra uma

configuracéo usual de um sistema de propulséo por combustivel sélido.

Figura 4.1 — Configuracéo usual de um sistema de propuls@o por combustivel sélido (Aerospace Web,
2013)
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Construtivamente, segundo Sutton (2001), ha duas formas possiveis para a
montagem do grédo dentro da camara de combustdo: forma de cartucho carregado
(cartridge-loaded) ou solidario & camara de combustdo (case-bonded grains). O
primeiro, de montagem mais simples, permite a colocagéo do grao propelente dentro
da carcaca da camara de combustdo, sendo posteriormente fechado com uma
segunda peca que ja possui o bocal, através de um flange. O segundo ja é
caracterizado pela producdo do grdo concomitante a da carcaca da cadmara de
combustdo, sendo este depositado no interior desta, ou seja, a propria camara de
combustdo serve de molde para o gréo-propelente, sendo este solidario as paredes

da camara ou a isolacé@o térmica da mesma. A figura 4.2 ilustra tais configuragodes.

Case with
Forward Insulation inner liner
support

Nozzle

= LL{ Support
Cartridge Aft
Grain Case  Flange insulation
Cartridge—loaded grain Case—bonded grain
(free—standing)

Figura 4.2 — Configuragfes possiveis da montagem do grao-propelente (Sutton, 2001)

A camara de combustdo pode assumir formas distintas, bem como o gréo
(conforme sera discutido na secéo 4.1.2), de acordo com necessidades operacionais
distintas, obtidas com queima adequada do propelente. A figura 4.3 ilustra trés

configuracdes distintas para o caso de camaras com o propelente nelas moldado.
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Finocyl (case-bonded)

| P Stress relieving insulati
/// e - Stress-relieving insulation

Spherical (case-bonded) with slots and cylinder

Figura 4.3 — Configura¢gBes da camara de combustao para aplica¢des especificas (Sutton, 2001)

O gréao propelente possui aparéncia de plastico (Nieble, 1996) e é formado,
basicamente, por trés parcelas: oxidante, combustivel e elementos de ligacao.
Segundo Sutton (2001) usualmente se utilizam perclorato de amonia (NH4CIlOa4)
dadas suas caracteristicas de boa compatibilidade com variados combustiveis,
disponibilidade e bom despenho quanto ao processo de combustdo. Também se
utiliza, em aplicacdes de menores requisitos de empuxo, alguns tipos de nitratos, tal
como nitrato de amonia cujo baixo custo e ndo producdo de fumaca pode ser de

interesse.

O combustivel mais utilizado, ainda segundo Sutton (2001), aluminio em p6
esferoidizado. Boro e berilio surgem como alternativas, sendo o primeiro de baixa
eficiéncia, a ndo ser quando em graos bastante diminutos e na presenca de ar; o
segundo ja possui queima bastante mais facil do que o boro, por apresentar ponto
de fusdo mais baixo, produzindo impulso especifico maior, entretanto enfrenta

problemas no que diz respeito sua alta toxidade.

Aglomerantes sdo substancias que visam unir as parcelas solidas de
oxidantes e combustiveis num unico sélido. Em geral sdo poliésteres, poliéster e
poli-butadienos. Implicam em alteracdes na eficiéncia de queima dos combustiveis

dadas reagcfes que se processam nestes polimeros em contato com o oxidante e
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combustivel, bem como em sua degradacdo, devendo ser bem selecionado para

comprometer o minimo possivel, o desempenho do sistema de propulséo.

Em geral, os grdo possuem uma cavidade interna pela qual a combustéo é
deflagrada a partir do uso de algum ignitor. Esta cavidade aumenta numa direcao
radial conforme de processa a combustdo, aumentando o volume da camara de
combustdo ocupado pelos gases, modificando a curva de pressdo em funcéo do
tempo. H& uma quantidade bastante grande de formas desta cavidade interna de
acordo com o perfil de empuxo desejado a ser fornecido pelo sistema de propulséo,
entretanto, conforme Sutton (2001), a construcdo se baseia em algumas poucas
formas ja bastante conhecidas. A secao 4.1.2 o presente texto visa abordar o efeito
da forma do grdo nas caracteristicas de queima do mesmo. Ainda segundo Sutton
(2001), ha grao propelentes que queimam tal como cigarros, isto é, ndo possuem
cavidade interna e sdo consumidos longitudinalmente, embora o usual ndo o seja
utilizar. Também é possivel colocar mais de um grédo-propelente dentro de uma

camara de combustéo, sendo esta configuracdo definida restart grains.

Conforme supracitado, o processo de combustdo inicia-se pela acdo do
ignitor. Conforme o ar é aquecido e o combustivel consumido, 0 gas no interior da
camara a alta pressao e com grande temperatura, passa a promover a continuidade
da queima do combustivel, sendo estas duas propriedades bastante importantes no
controle deste processo. Para acelerar ou aumentar a eficiéncia do processo de
combustédo algumas alternativas sao utilizadas, tal como a utilizacdo de estereatos
de chumbo e cobre (Sutton, 2001).

Cinzas ndo sado um grande problema no que tange a combustdo de
combustiveis solidos no atual estado de desenvolvimento dos mesmos. Segundo
Sutton (2001) apenas 1% dos produtos da combustdo sdo cinzas, contra 7% na
década de 1970.
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4.1.2. Formatos de gréo

Conforme serd apresentado na secdo 4.1.3, a combustdo do propelente
sélido é dependente da area de queima do gréo. Desta forma, a forma do gréo e de
fundamental importancia para a determinacdo do projeto do sistema de combustéo

adequado as necessidades.

Segundo Ordnace Corps (1960), pode-se definir os grdos como de queima
neutra (quando a geometria é tal que permita queima em taxa constante a cada
instante de tempo), de queima progressiva (aqueles em que a taxa de combustéao
aumenta de acordo com o tempo) e regressiva (taxa de combustdo € reduzida
conforme o tempo). Tais propriedades de queima sdo usualmente obtidas com a

alteracdo da forma da cavidade interna do grao propelente.

Ha, segundo Sutton (2001) uma grande quantidade de formas de grao
existente, muito embora o esforco de projeto em geral seja restrito hd algumas
formas bastante estudas e conhecidas. Dentre elas citam-se o0 grao estrelado e o
cilindrico. A figura 4.4 ilustra algumas formas de grdo bem como as respectivas

curvas de empuxo em funcao do tempo de queima.

Progressive
Meutral

8
2
=

|
|

Time

MeLtral,

L

Time
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Time Dual Composition Time

Thrust

Time

.-lTWD Step Thrust

Thrust

T

Figura 4.4 — Variadas geometrias de grdo-propelente e respectivas curvas de empuxo em fungéo do
tempo (Nakka Rocketry, 2013)
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Para que haja alteracdo do perfil de empuxo conforme o tempo, é necessario
que se altere a taxa de queima do propelente, o que € possivel com a alteracdo da

area de combustdo do propelente. Tal sera discutido na se¢édo que se segue.

4.1.3. Taxa de queima

A taxa de queima de um propelente sélido diz respeito a perda de espessura
do gréo por unidade de tempo durante sua queima. Conforme ja exposto, o grao de
propelente sélido € consumido do centro (onde possui, a priori, uma cavidade) para
sua porcao externa, sendo este consumo dependente, em maior grau, a pressao
interna da camara de combustdo (Sutton, 2001), e é exatamente esta taxa de

“degradacao” do grao-propelente que esta variavel mede.

Conforme afirmam Sutton (2001) e Ordnance Corps (1960), o processo de
combustdo de propelente sélido ndo é completamente explicada a partir de modelos
algébricos, sendo necessario recorrer a dados experimentais para maior relevancia
no projeto ou selecdo do combustivel para o sistema de propulsdo proposto. Uma
relacdo empirica que descreve de maneira adequada a taxa de queima de um

combustivel solido a uma dada temperatura T,, do gréo imediatamente anterior a

gueima (Ordnance Corps, 1960) é dada pela relacao 4.1.

r=ap/" (4.1)

Com r a taxa de queima; p. a pressao no interior da cAmara de combustao; a
o coeficiente de temperatura, relacionado a temperatura ambiente do gréo-
propelente; n o indice de combustdo que caracteriza a influéncia da pressao da
cdmara de combustdo na taxa de regressdo do combustivel solido. A figura 4.5,
extraida de Sutton (19xx) ilustra a variacdo da taxa de combustdo em funcdo da

pressdo da camara de combustéao.
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Figura 4.5 — Taxa de queima em funcdo da presséo no interior da cAmara de combustéo
(extraido de Sutton, 2001, p. 429)

O que se nota sdo maiores taxas de queima do propelente quanto maior sua
temperatura anterior a queima para cada um daqueles ilustrados no gréafico. Este
comportamento € explicado pela alteracdo da cinética quimica da reacdo de
combustdo acarretada pelo aumento de temperatura. Ha formulagdo matematica
que visa quantificar tal efeito na taxa de combustdo sendo estas dada pela equacgéao

4.2, conforme exposto em Sutton (2001).

_(6lnr) _1(ﬁ> (4.2)
»=\Tor ), " 7\6T),

O termo o, fornece a sensibilidade da taxa de queima em funcdo da

temperatura, a uma dada pressao interna da camara de combustao.
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A expressdo empirica para taxa de queima permite determinar a taxa de
geracdo de gases de combustdo, possibilitando deste modo, a partir do
equacionamento do balanco de massa no sistema de propulsdo - composto por
camara de combustdo e bocal — e assim uma avaliacdo da pressao da camara de
combustdo conforme se da a evolugdo do processo de combustdo com o tempo,
bem como estipular uma curva de empuxo em funcdo do tempo, dada sua intima
relacdo com a pressao e velocidade dos gases que saem acelerados do bocal, em
geral, convergente-divergente operando como um bocal de De Laval. Tal sera feito
na se¢do 5, quando se equacionard tais expressdes e, para determinados conjuntos
de parametros, estimar o comportamento do empuxo e pressao na camara de
combustdo conforme ha a evolucdo da queima do propelente. A vazdo massica

gerada na queima do grao-propelente é dada pela equacao 4.3.

mgerado = Meomp = pgrAq = Pg (apcn)Aq (4.3)

Da expressdo 4.3 tem-se p,. a massa especifica dos gases oriundos do
processo de combustdo e 4, a area do propelente sendo queimada. E notorio que

esta varia conforme o tempo dado o consumo de propelente, desta forma a vazao

massica também varia com tal.

4.1.4. Combustao de combustiveis solidos

4.1.4.1. Ignicéo

A ignicdo de combustiveis solidos, segundo Kuo (1984) possui trés

mecanismos distintos propostos para sua avaliagdo, sendo eles:
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e Teoria da ignicdo térmica: reacBes quimicas exotérmicas que se

processam na superficie do grao-propelente acarreta em aumento de
temperatura tal que se atinge a temperatura de ignicéao;

e Teoria da fase gasosa: transferéncia de calor a superficie do grao

devido a reacOes exotérmicas da fase gasosa da caAmara de combustéo
acarretam em aumento de temperatura da superficie do gréo até aquela
na qual se processa a ignicao;

e Teoria heterogénea: diz respeito, conforme sera apresentado na secao

4.1.4.3, as reacdes exotérmicas entre 0s gases oriundos do processo
de pirdlise do aglomerante e decomposicédo do oxidante. Tais culminam
em gradiente térmico entre a superficie do grdo e estes gases
acarretando num processo de transferéncia de calor que tende a

aquecer o grao até a temperatura de ignicao.

Kuo (1984) ainda destaca que, parte fundamental do processo de combustéao
esta na ignicdo do combustivel sélido sendo esta responsavel por se obter a pressao
de trabalho para a queima do combustivel. Conforme ilustrado pela figura 4.6, nota-
se trés fases bastante distintas: a primeira se estende desde o inicio da ignicéo até a
uma primeira indicacdo da ignicdo do grdo; a segunda se estende até a ignicao
completa de toda a superficie livre do gréo propelente, dando inicio a terceira fase

na qual a presséo no interior da camara de combustao atinge a pressao de projeto.
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Figura 4.6 — Fases do processo de ignicdo de combustiveis sélidos (Kuo, 1984)

Na primeira fase nota-se a existéncia de um retardamento quimico no inicio
da ignicdo até o comeco da queima do grdo propelente, tal como observado num
motor automotivo de ciclo Otto. Tal retardamento tem origem do aquecimento da
superficie do grao bem como da transferéncia de calor devido a uma reacédo
exotérmica no que diz respeito a degradacédo do aglomerante. Este tempo pode ser

estimada partir de:

kpcombn E/E

B T 1—1.O4ln(g)_0

Com k a condutividade térmica do propelente, F a taxa de transferéncia de calor a
partir do ignitor, B o fator pré-exponencial da equacéo de Arrhenius, E a energia de
ativacdo para a reacdo de ignicdo, p.,mp, @ Massa especifica do combustivel, R a

constante dos gases perfeitos e To a temperatura inicial do conjunto grao e espacgo
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vazio da camara de combustdo. Tal expressao leva em conta os da degradacgéo do
aglomerante e de reacdes exotérmicas do processo de igni¢ao.

O efeito da pressdo no retardamento da ignicdo é dado por relagdo empirica

proposta por Baer e Fishman apresentada em Kuo (1984)

1/3

d\’ b3
= (@) * (o)

Com Q a taxa de transferéncia de calor para o gréo, d e b séo fatores experimentais
e p, a pressao no interior da camara de combustdo. O que se nota € que a pressao
possui influéncia inversamente proporcional, isto €, quanto maior for, menor o tempo
de retardamento da igni¢c&o. Isto se deve ao fato de a pressdo aumentar a taxa de
reatividade quimica das substancias nas reacfes que se processam durante a
ignicdo, acelerando tal processo, conforme serd apresentado na secdo 4.1.4.4 a
partir do trabalho de Maccio (1998).

4.1.4.2. O processo de combustao

Simplificadamente, segundo Kuo (1984), apdés a ignicdo o combustivel e
oxidante se degradam formando uma mistura na superficie do grao-propelente, para
que tal ocorra € necessario que haja a cisdo do aglomerante por meio de uma

reacao de degradacao deste, em geral um polimero, formando mondmeros e gases.

Para que a combustéo se processe é necessario que haja mistura de oxidante
e combustivel tal como em qualquer processo de combustdo. Entretanto como estes
nao estdo na fase liquida ou gasosa, mas sim numa mistura entre fases sélidas ou
sélida e gasosa (combustivel e oxidante, respectivamente) a mistura ndo ocorre de

maneira homogénea como ocorre num motor a combustdo interna dado o swirl
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conforme a mistura € injetada no cilindro, mas sim por meio de difusdo do oxidante

através do gréo de combustivel, acelerada por pressdes de maior magnitude.

Conforme serd apresentado em 4.1.4.4, a degradacdo do aglomerante e
oxidante, outrora na fase sdlida, acarretam na formacao de substancias que gasosas
que, ao se combinarem por intermédio de reacdes quimica exotérmicas, formam
uma chama. Dada a caracteristica exotérmica do processo, calor € transferido para
0 grao-propelente que, dada a ignicdo, passa a se decompor alimentando tal chama.

4.1.4.3. Combustiveis solidos homogéneos

Exemplos destes combustiveis sdo a nitroglicerina e a nitrocelulose, sendo
estes caracterizados pelos componentes (oxidante e comburente) serem pré-
misturados, diferentemente dos combustiveis sélidos compostos ou heterogéneos.
Esta homogeneidade de mistura traz vantagens no que tange 0s aspectos
construtivos tendo em vista que o solido de combustivel pode ser moldado no
interior da camara ou extrudados com certa facilidade, desta forma, pode-se ter
graos-propelentes de diversos formatos. Esta multiplicidade de formas construtivas
representa uma vantagem quando se deseja taxas de queimas adequadas ou

mesmo adequacédo do grdo a geometria do artefato ao qual sera instalado.

Uma vantagem deste combustivel em relagdo ao composto, segundo Kuo
(1984) é o fato de nao formar fumaca dado que em sua combustdo ndo ha formacéao
acido cloridrico, substancia que condensa de maneira relativamente facil quando em
contato com o vapor de agua quente na regido de escape (ou pluma) do sistema
propulsor. Como desvantagem cita-se o fato de ter menor impulso especifico em
relacdo aos combustiveis heterogéneos, restringindo-o a aplicacdes de média e

pequena poténcias, tais como misseis pequenos ou de curto alcance.

Kuo (1984) traz algumas caracteristicas do processo de combustdo que se
processa a partir da ignicdo destes combustiveis, sendo tal analise limitada ao
processo se desenvolvendo em regime permanente, isto €, ja se supfes que o

periodo transiente decorrente da ignicdo até estabilizagcdo da chama ja tenha sido
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completamente desenvolvido. A figura 4.7 traz uma ilustracdo particular acerca dos
variados extratos do conjunto combustivel, chama e gases durante o processo de

combustao.

S fici i .
“t:)zer; ;c(;ile?egradanon layer 5 Secondary (luminous) flame

C- O—”—NOZ ND"’CO-Hl

? 3 | Primary flame (fizz zone)
| NO, / aldehydes

Y
////4 lr;?.':ction (dark) /
/
Y

1 Preheated
zone

¥
Surface End of flame End of flame
NO, 0.33 NO, — NO, — |
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Figura 4.7 — Regibes tipicas durante a queima de um propelente sélido homogéneo

Apbs ignicdo e estabelecimento de condicao de equilibrio do processo ao que
se refere a constancia do processo de queima do propelente, nota-se que ha, na
fronteira da face em degradacédo do combustivel uma regido pré-aquecida bastante
diminuta na qual ndo h& qualquer tipo de reacdo dada a temperatura nao tao
elevada a ponto de garantir energia de ativacdo necessaria. Atravessando tal regiao,
0Ss componentes do gréo-propelente chegam a regido de degradacdo na qual as
temperaturas sao de tal magnitude que permitem a cisdo de moléculas de certos
componentes, como é o caso da ligacdo entre COz2e NO2 que passa a ser desfeita.
Esta degradacdo implica em produtos que passam a ser reagentes de outras
reacoes, sendo o balanco global da energia destas reacdes de degradacdo e
formacao positivo, isto €&, libera-se mais energia do que se consome, caracterizando
um processo exotérmico, o que garante a alimentacdo energética necessaria para

gue o processo da combustao e degradacao do grao-propelente continue ocorrendo.
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Em pressdes adequadas (~10 MPa segundo Kuo, 1984) nota-se a formacao
de duas frentes de chama distintas separadas por uma zona negra, tal como
ilustrado pela figura 4.7. A chama secundaria, em geral, esta demasiadamente longe
da primaria - esta ultima préxima a face de degradacdo do grao —propelente — néo
influindo de maneira significativa no processo de queima do propelente, ou seja, este
processo é diretamente controlado pela chama primaria, quando h4, sao efeito este
decorrente das simultaneas reacdes quimicas de degradacdo e formacédo se

processando a partir dos produtos da combustao.

No que tange os aspectos de modelagem matematica dos processos
matematicos é necessario avaliar a transferéncia de calor ao propelente bem como
as taxas nas quais as reag0es se processam, tendo em vista a grande correlagéao
que ha entre tais fenbmenos, isto €, quanto maior a reatividade, mais intensa a
reacdo quimica e, consequentemente, maior a quantidade de calor gerado no
processo a ser transferido tanto para os gases queimados fronteiricos, estrutura e
grao-propelente. Kuo (1984) apresenta uma abordagem bastante detalhada acerca
dos processos de queima para as fases gasosas e ndo-gasosas de maneira
separada. Aqui a analise sera restrita somente aos processos necessarios para
obtencdo das temperaturas nas frentes de chama previamente mencionadas,
temperatura da superficie do grdo e a taxa de transferéncia de calor na sua
superficie de degradacdo. E digno de nota que com estes parametros e sabendo
como varia o diametro do grdo bem como sua condutividade, pode-se estimar com
alguma a taxa de transferéncia de calor para a carcaca da camara de combustéo
durante o processo completo de queima a partir da aplicagéo do balanco de energia

um volume de controle de fronteira movel.

A taxa de queima do propelente esta relacionada a temperatura da superficie
do grdo segundo uma relacdo proxima a aquela da equacgdo de Arrhenius (a ser

apresentada na sec¢ao 4.1.4.4), dada por:

—— Ba
R=c¢e¢ 2RTsuperficie
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Na qual E, é a energia de ativagdo para a degradacdo do grdo propelente, R a
constante dos gases ideais e Tsuperficie @ temperatura da superficie do grdo expostas

aos produtos da combustéo.

A taxa de transferéncia de calor a superficie do grdo esta intimamente
relacionada aos gases formados durante a combustdo. Aplicando o balanco de

energia a superficie do propelente em queima:

dT

QSuperfl’cie = kgases a = ppropelenteR(CgasTsup - CpropTO - CIsup,degrad)
gases,sup

Na qual k € a condutividade térmica dos gases, ¢ o0 capacidade térmica especifica
dos gases (gas) e propelente (prop), qsupdegraa © Calor por unidade de massa
demandado para a degradacao dograo-propelente, p,,opeiente @ Massa especifica do

propelente e R a taxa de reacao ja definida e To a temperatura inicial do propelente.

Tal taxa de transferéncia de calor, como ja supracitado, é decorrente da frente
de chama primaria formacéo nas vizinhancas da superficie em degradacéo, desta
forma sendo dependente, portanto, da cinética da reacdo de formacdo desta. Em
termos de balanco de energia entre o grao-propelente a sua temperatura inicial e o

limite mais distante da chama priméria tem-se a temperatura desta.

_ CpropTO + QSup,degrad + qchama prim
Tchama prim. —

Cgas

CoM qchama prim O calor consumido para a formagao da chama primaria.
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4.1.4.4. Combustiveis solidos compostos

Kuo (1984) classifica combustiveis soélidos compostos como aqueles que
possuem oxidante finamente particulado disperso no gréo propelente. Devido a esta
caracteristica construtiva, um numero grande de rea¢des quimicas ocorrem durante
a combustdo deste tipo de combustivel, dificultando uma analise numérica do

problema.

Miccio (1998) propde a divisdo da combustdo em cinco reacdes quimicas
distintas a serem consideradas na modelagem do problema a fim de se obter
estimativas da temperatura da superficie em queima do gréo-propelente bem como
da taxa de queima a partir da avaliacdo das reacdes do aglomerante e oxidante.
Genericamente, seguindo a nomenclatura de Miccio (1998), estas cinco equacdes

sdo dadas pela pirélise, isto € decomposicdo a alta temperatura, do aglomerante:

As()lido - 1OBgasoso (1)

Seguida pela dissociacédo do oxidante:

Csélido - Dgasoso + Egasoso (2)

A equacdo que segue diz respeito a a oxidacdo heterogénea do aglomerante
(espécie A) por uma substancia na fase gasosa (E), oriunda do processo de

dissociacao do oxidante (C):

(3)

gAsélido + Egasoso - 4Fé]asoso

A formacédo da chama de oxidac&o devido os produtos da dissociagdo do oxidante, a

temperatura elevadas é dada por:
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(4)

Dgasoso + EEgasoso - ZF.;]asoso

Nota-se que o mesmo produto da oxidacdo do aglomerante € formado nesta reacéo
e também na reacdo de formacao da chama a partir dos produtos da dissociag¢do do
aglomerante e do oxidante

(5)

Bgasoso + EEgasoso - 2Fjgasoso

O modelo proposto baseia-se na hipétese das espécies gasosas serem
supostas como gas perfeito e em escoamento unidimensional ao longo da direcéo
axial do propelente ou camara de combustdo, tal como sera suposto para a

modelagem preliminar do escoamento induzido pela queima do gréo propelente a
posteriori.

Aplicando o balango de massa ao aglomerante e oxidante, respectivamente,

levando em conta as rea¢fes das quais participam:

dm R
agl;merante _ _MAI (R1 +?3> dA
t Aaglomerante
dmoxidante - —M (R )dA
- 53,  — —HMc 2
dt Aoxidante

Com R; a taxa de reagdo da espécie na i-ésima equacdo, em kmol/(m?s), e M; a
massa molecular de cada espécie (em kg/kmol). Ou seja, a variagdo da quantidade
total de tais espécies é proporcional a taxa com que sdo consumidas nas reacoes de
pirélise do aglomerante e dissociacdo do oxidante.
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Prosseguindo com a aplicacdo da equagédo da continuidade ao volume de
controle (V.C.) definido pelo volume total do sélido do grao-propelente (por exemplo

a camara de combustdo de um foguete), como somente gas deixando o V.C.:

dpgases
dt

+V-(pu) =0

E sabendo que, da equacao dos gases perfeitos:

P
RT

E entdo, em termos de concentragéo:

n,n_P_”P cM
_= == — =
v mMv_RT M P

Entdo, na equacao da continuidade para o escoamento na direcdo axial (2):

d(Mgasengases) + a(Cgases1\/1gasesuz) _

dt dx 0

O que demonstra a variacdo da massa de gases oriunda da combustéo, no caso, da

espécie F.

Supondo o mesmo volume de controle j4 explicitado tem-se do balango de
massa para cada uma das espécies gasosas envolvidas no processo, em termos da

concentracdo molar y; = n;/n, com n o numero de mols:
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dyi dy; 0 ( 0y 0 ( 0y

S g 05 205 o

Jt dz 0dz\ 0z dy\ 0dy
Lei de Fick

Com G; a taxa de geracdo da i-ésima, sendo esta dependente da reagdo quimica
correspondente. Para a espécie B ela € dada por —Rs (taxa molar de consumo da
espécie B na reacdo de combustdo com a espécie E oriunda do oxidante), para a D

por —R, e paraa E, —0,5(R, + R5).

Do balanco de energia no V.C. considerado para a fase condensada, tem-se:

or 1 <62T aZT)

ar +
at Csélidoys()lido 0z? ayz

Com T a temperatura e y o calor especifico molar. Analogamente para a fase

gasosa:
oT 1 6<kaT>+6(kaT> oT 1 (RoH, + RoHe)
_—— | — — — — -u,——
ot Cgasoso)’gasoso 0z 0z ay ay z 0z Cgasosoygasoso e oS

Com k a condutividade térmica e H a entalpia molar das reacdes listadas. Ou seja, a
variacdo de temperatura é funcdo da conducdo de temperatura em cada uma das
fases, descontadas as variacdes oriundas do escoamento da fase gasosa e da

energia requerida para realizagcdo dos processos quimicos.

A taxa de reacdo de cada uma das espécies € dada pela equacédo de
Arrhenius corrigida pela concentracdo dos produtos da pirélise e dissociacdo bem

como pela pressao associada ao processo. De Atkins (2008), tem-se:
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R = Ae RT

Com R a taxa de reacgédo, A o fator pré-exponencial, Ea a energia de ativagdo para
determinado processo quimico, R a constante dos gases ideais e T a temperatura na

qual a reacao esta se processando.Com as corre¢des propostas por Miccio (1998):

Eq;
J

_ — . . . .
Rj = Aje RT pViyghiBypHiDy HiE

Com p a pressdo na qual a reacdo esta se processando, v; 0 expoente de presséo
para a j-€sima reacdo, u;; 0 expoente de fracdo molar da espécie i na j-ésima

reacao.

Destas equacfes, pode-se estimar o comportamento das espécies bem como
da temperatura durante a queima do combustivel sélido. Nota-se que, conforme ja
comentado, o tratamento matematico para o0 caso de combustiveis sélidos
compostos € bastante mais complicado do que para os homogéneos. Isto se deve
as multiplas reac6es que ocorrem simultaneamente e que necessitam de tratamento

mais delicado no que tange sua simulacao.

A figura 4.8 apresenta o resultado das simulacdes realizadas por Miccio(1998)
remetendo a variacdo da temperatura da superficie do combustivel sélido em funcéo
da presséo na qual as reacdes estédo se processando. Tal levantamento é feito para
duas geometrias distintas: SAND e SPHE. A primeira diz respeito a uma geometria
do tipo “sanduiche” no que se refere ao oxidante estar estar disposto entre camadas
de combustivel, j4 a segunda se remete a propelente com particulas esféricas de

oxidante.
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Figura 4.8 — Variacé@o da temperatura na superficie do grao-propelente em fungéo da presséo

de reacgéo

Da andlise do resultado o que se nota € uma aumento da temperatura da superficie

com a pressao, sendo este maior para a geometria SPHE do que para a SAND isto

em muito pela maior homogeneidade na primeira configuracdo, o que aumenta a

area de contato entre o combustivel e o oxidante, tornando mais eficiente os

processos de transferéncia de calor. Também se nota que a temperatura do

aglomerante tende a ser maior do que aquela do oxidante isto porque sua

dissociacdo envolve uma pirélise caracterizada pela ocorréncia em altas

temperaturas.

4.2. ESCOAMENTO COMPRESSIVEL BIDIMENSIONAL

4.2.1. Fundamentos

Shapiro (1953) separa a analise do escoamento em multiplas dimensées em

dois casos basicos: escoamento ir rotacional, sem transferéncia de calor ou atrito, ou

seja, potencial e aquele com transferéncia de calor e atrito. O primeiro caso,
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amplamente discutido é basicamente utilizado para a determinagdo do escoamento
dentro de um bocal ao longe da parede ou 0 escoamento externo ao longe no qual
ha algum corpo imerso. Tal € a mesma analogia feita pela mecanica dos fluidos
incompressiveis ao analisar o escoamento ao redor de corpos imersos tais como
folios, conforme apresentado em Anderson (1988) e Munson (2004). Tal
simplificagdo é de sobremodo importante para avaliacdo de muitos através de
técnicas comuns ao escoamento supersénico e subsbnico (método das variacdes
infinitesimais), ou distintas (transformacdo para o plano hodografico em
escoamentos subsdnicos e método das caracteristicas para supersénicos). O
segundo caso, por sua vez, é restrito a analise da camada limite, supondo que todos
os efeitos devido ao atrito e transferéncia de calor ocorram através delas, sendo elas

aderidas a fronteira do corpo ou obstaculo ao escoamento.

Como um primeiro passo, restringir-se-a a analise do escoamento potencial
no interior de um bocal convergente-divergente, desta forma serdo lancadas
descri¢cdes acerca de cada um dos métodos a serem utilizados para o projeto de um
dos bocais. Entretanto, conforme atestado em Anderson (2003) e Shapiro (1953), os
métodos, embora distintos partem todos das equacdes basicas para o escoamento
potencial, desta forma a apresentacdo destes conceitos basicos deve ser

evidenciada de forma a motivar os desenvolvimentos posteriores.

Conforme definido em Anderson (1988 e 2003) e Shapiro (1953), a equacgao
da continuidade para regime permanente na forma diferencial € dada pela equacéo
4.1.

V- (pl) =0 (4.1)

Com u o vetor velocidade de um ponto do escoamento. Da teoria potencial tem-se,

por definicdo que:

op 09 6(]5) (4.2)

U= (uuvw)= (a,a,z
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Com ¢ uma funcgéo escalar que satisfaca:
Vip =0

Para o caso plano, objeto de anélise do presente trabalho, o vetor velocidade

é definido por:

dp ¢

— 4.3
u= (u, U) = (ai@> = (d’x' d)y) ( )

Expandindo o divergente da equacao (4.1) e substituindo o resultado obtido para o

caso plano em (4.3):

0(p9) , pdy) _

ox oy 0=

0

dp p (4.4)
= p¢xx+p¢yy+¢x&+¢y@= 0

Da definicdo de numero de Mach, jA suposto o processo isentropico por

hip6tese do escoamento potencial:

222 (4.5)
dp

Logo, a fim de obter as derivadas parciais da massa especifica do fluido em
relacdo a posicdo ao longo do escoamento € necessario obter alguma expressao
para dp em funcdo do campo de velocidades. A ideia mais natural sera a de se valer

da equacao de Euler na forma diferencial (Shapiro, 1953):



Que substituida com os potenciais de velocidade se torna:

Igualando (4.5) com (4.7):

2 2
dpz_pd<¢x;¢y>

6_p=_pd<¢£+¢>§>

Derivando (4.8) emrelacdoax e ay:

ap p
ox = 202 (WPxbux + 20ybry)
dop  p
_ay = —2—62(2¢x¢xy + 2¢y¢3’3’)

Consequentemente, da equacéo (4.4):

p(pxx +p¢yy - c2

c? c? c?

c?

2 2
(- E) g (1-B) 2P

c? c?

0
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(4.6)

(4.7

(4.8)

0=

(4.9)
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Em termos das componentes de velocidade:

. u? 6u+ ) v2\ dv Zuvau_o - (4.10)
c? ) ox c2)ay “c2ay

(4.11)

= |(c? —uDu, + (¢ —v)u, —uv(u, —uy) =0

4.2.2. Métodos das caracteristicas

O método das caracteristicas, segundo Anderson (2003) consiste em
determinar linhas caracteristicas no escoamento para as quais a variacdo das
propriedades ao longo das direcGes do sistema de coordenadas € indeterminada, tal
como em linhas de Mach de propagacdo de choque infinitesimais ao longo do
escoamento. A partir da determinacéo destas, por meio das equacdes fundamentais
ja desenvolvidas para o escoamento compressiveis e das condigcbes de
compatibilidade, tem-se a determinacdo de cada ponto de intersec¢do entre as
caracteristicas. Desta forma ha a possibilidade de se saber as propriedades ao
longo de cada ponto do sistema definido dada uma malha gerada. Ou seja, é
possivel se determinar tantos nds quanto desejados dada uma malha para o

escoamento.

Trés diferentes abordagens para a determinacdo do equacionamento
fundamental s&o apresentadas na bibliografia. Hodge (1995) parte de conceitos mais
fundamentais acerca do escoamento potencial, avaliando um elemento infinitesimal
exclusivamente para a determinacdo das expressdes basicas para avaliacdo do
método caracteristico. Shapiro (1953) da continuidade a sua abordagem para
escoamentos  potenciais  supersbnicos, demonstrando muito além do
equacionamento fundamental, inUmeros casos fundamentais tais como influéncia de
paredes curvas no escoamento e projeto de bocais de tuneis de vento. Por fim,
Anderson tem uma abordagem pouco mais direta em relagdo ao seus pares,

avaliando o método das caracteristicas inicialmente de uma maneira aproximada ao
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método computacional, passando por uma definicdo pouco mais formal das linhas
caracteristicas até determinar, finalmente, as equacdes de compatibilidade.

Tanto Hodge (1995) quanto Anderson (2003) fazem alusdo a dois casos
notaveis a serem discutidos posteriormente: pontos internos a malha e pontos de
parede. O primeiro faz uma abordagem bem mais detalhada, lancando mao das
equacgdes que regem a posicdo de cada um dos pontos enquanto Anderson somente
faz aplicagdo de conceitos fundamentais. Os conceitos a serem apresentados a
partir de agora serdo um compilado daqueles encontrados em Anderson (2003) e
Hodge (1995) aproveitando o melhor possivel os conceitos por eles apresentados a
fim de, por meio de uma rapida revisdo, apresentar consistentemente o método em

questéao.

A figura (4.9) extraida de Anderson (2003) traz os nos de uma malha fluida
discreteada com o vetor velocidade plano para um ponto qualquer do escoamento. E
importante ressaltar que todos os pontos estdo sobre uma linha caracteristica do
escoamento e que o vetor velocidade faz um angulo u em relacéo a este ente. Tal
situacdo ilustrara de maneira bastante interessante o fato das linhas de Mach serem
linhas caracteristicas do escoamento, resultando importante para o projeto dos

bocais bidimensionais.

Characteristic line

LN

@j+1

S

(0. 7) -

@“i—n

“h e ——

Q
-

Figura 4.9 — Malha fluida com linha caracteristica (Anderson, 2003)
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Sabe-se que o0 ponto posterior na diregdo x na malha fluida pode ser
determinado a partir da expansdo em série de Taylor da projecdo da velocidade

naquela direcdo, dado por:

o*u (4.12)
ui+1’j =ui'j+z<ﬁ> Axk
ij

Da equacao da continuidade na forma apresentada por (4.10) é possivel se isolar o

termo du/dx, resultando em:

zuvau (1 vz)av
0 -2 2 ) A
u__ctoy \ct/0y (4.13)
0x u
c

Com (4.13) o proximo ponto da malha pode ser determinado para o caso de
uma aproximacao linear. Desta expressdo também €& possivel perceber que se a
componente da velocidade na direcdo x do escoamento for a sénica local, o termo
de variacdo desta componente em funcdo da posicdo ao longo do eixo x é uma
indeterminacdo. Nota-se que para cada ponto de uma curva que varia de tal maneira
ndo se sabe a variacdo ja explicitada, mas sim as propriedades a cada ponto. Para
este curva se da o nome de linha caracteristica de um escoamento, tal como
definido em Anderson (2003).

Da figura 4.9 pode-se notar que, de trigonometria basica no triangulo de

velocidades, para o caso notavel em que u = c:

u C 1 (4.14)
sen(u) = —= = u = arcsen (T) = |u = arcsen (M)

[l llull
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Que é a propria definicdo de angulo de Mach conforme apresentado em Zucker
(1977). Desta forma pode-se afirmar que as linhas de Mach séao linhas
caracteristicas. A pergunta que resta € se somente estas linhas sédo caracteristicas
ou se ha outras. Ainda baseado em Anderson (2003), lanca-se mao da equacéo da

continuidade sob a forma de potenciais de velocidade:

; ; 4.9
<1 _¢x>¢xx . <1 _@) 5 2P (49)

c? c? c?

Diferenciando ¢, e ¢,:

L) L) 4.15
do, = ax" dx + ayx dy = [d¢y = Predx + Prydy (4.15)
d¢ ¢ (4.16)
dp, = —2dx + —=dy =[dp, = ¢,, dx+¢,,dy
(Schw):l};"tz)

Tem-se um sistema linear com trés equagdes e trés incognitas (¢.., Pyy, Px,) dado

por:

2 2
1-2 1-=2 _2¢>x<21>y Prx 0
c c c byy | = | dps
dx 0 dy ¢ do
0 dy dx Xy Y

A solucéo deste sistema linear fornece as seguintes solucgdes:



o ( _% > dxde, + 2 ¢"¢y dxde, — ( _ % ) dyde,

e TETT ¢y)d2+z¢x¢ydxdy+(1 ) 4y

o _(1 ¢x)d d¢x+2¢x¢Yd xd¢, + ( f—;) dyd¢,

oy (1 - f;) dx? + 22222 ¢"¢y dxdy + ( %) dy?

du OJv ( qu)dydd)x < d)y) Axdey

xy: frm =
V(1= ¢y)d2+2¢x¢ydxdy+< - 25)ay?

Ou seja, conforme notado por Anderson (2003) as solugdes séo da forma:

g
|
S| =
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A figura 4.10, extraida de Anderson (2003) traz um ponto fluido A escoando

ao longo de determinada direcdo e sentido definido pelo angulo 6 do vetor

velocidade em relagdo ao eixo das abscissas. Esta direcdo € qualquer e define

determinamentemente as caracteristicas do escoamento neste ponto. Isto pode ser

dito porgue para algum angulo 6 ha alguma combinacao de dx e dy tal que levem o

denominador das solu¢des assumirem o valor nulo implicando no fato de, embora se

saiba que cada uma das varia¢cbes dos potenciais de velocidade neste ponto sejam

conhecidas, sua variagdo em determinada direcdo passa a nao ser.
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7l

-
X

Figura 4.10 — Ponto A de um escoamento se movendo instantaneamente na dire¢cdo 6 em relacdo a
horizontal (Anderson, 2003)

Assumir uma dire¢cdo na qual se faca o denominador dos valores de ¢;;
tender a zero é fisicamente inconsistente, tendo em vista que nunca havera uma
variacdo local de velocidades que tenda ao infinito para qualquer condicdo no
escoamento de um fluido. A Unica saida para contornar esta problematica é assumir
o valor do numerador da solu¢do também nulo, acarretando numa indeterminacéo
do tipo 0/0 para a variagdo das componentes da velocidade do ponto. Isto implica
nestas variacoes de velocidades indeterminadas. Ou seja:

dou Ou dv dv 0 (4.17)

—_— =
dx dy dy dy O

Tal fato alude aquele jA mencionado para as linhas caracteristicas, entes nos quais
nao se tem a determinacéo da variacao das propriedades ao longo das dire¢cdes do

escoamento. Tomando o denominador das solugdes de ¢;;:

2 2 4.18
(1—¢—§)de+2¢x¢ydxdy+<1—¢—’2€>dy2=0=> (4.18)
c c

c?

v? uv u? 4.19
=>(1—?>dx2+2?dxdy+<1—c—2>dy2=0 (4-19)
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Dividindo ambos lados de (4.19) por dx2:

2 d 2\ dn 2 4.20
1= )22 (1) () < (420)
c? c? dx c? ) \dx

Conforme ja explanado, forcando a solucdo ser da forma 0/0 introduz-se o
conceito de linhas caracteristicas. No caso particular em questdo, sua direcdo local

no ponto A é definida por:
dy (dy)
dx  \dx/ g
Substituindo esta expressao na equacao (4.20) obtém-se, finalmente a expressao:

2 d 2 d 2 4‘21
1-2)+22(2) 4 (1-5)(2) =0 (4.21)
c? c? \dx/ .qr c? J\dx/ cqr

Salta aos olhos que a equacdo (4.21) € uma funcdo quadratica em dx/dy,

desta forma sua solucédo é demasiadamente simples e dada por (4.22):

_ ¢ =
2
@ 5
c
uv u2p? 1 v2u?  u?+v?
(dY) c2 —N c* c* c?
- =
dx car
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(1 - Z—i) (4.22)

Nota-se que a solucdo pode ser real e dupla, simples ou complexa
dependendo do regime de escoamento que se estad avaliando. Para o caso de
regime supersbnico, ha duas possiveis dire¢cbes para as linhas caracteristicas,
conforme pode ser notado na figura 4.11 extraida de Anderson (2003). Para o caso
do escoamento sbnico, apenas uma direcdo caracteristica existe. Em contrapartida
para o escoamento subsénico somente solu¢cdes no dominio complexo sédo obtidas,
dai o fato de ndo ser comum utilizar este método para a solucdo de problemas de

escoamentos subsonicos.

Streamiine

Characteristic line

X

Figura 4.11 — Linhas caracteristicas para o escoamento supersénico (Anderson, 2003)
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Um ultimo par de substituicdes pode ser feita na equacao (4.22). Estas estao

relacionadas a definicdo de cada uma das componentes do vetor velocidade a partir

do moédulo da velocidade. Sejam elas:

u = ||ul|cos8

v = ||u]|send

Logo:
=112
4 1 5?;00059 N
(dx)car - ( ||1]|? cos? 9)
==

(dy) —M?senfcosd + VM2 — 1
= | — =
dx/ cqr (1 — M?cos?0)

Mas, da definicdo de angulo de Mach:

1 2 1
e = — =
S =y sen?pu

Substituindo (4.26) em (4.25):

senfcosb 1 — sen?u
- 2 * 2
sen?u sen?u

@), -
dx)car (1 __cos? 0)

sen?pu

O que resulta, segundo Anderson (2003), em:

(dy) = tg(0 + )
dx car g _H

(4.23)
(4.24)

(4.25)

(4.26)

(4.27)

(4.28)
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Isto comprova o0 exposto anteriormente de que linhas de Mach sé&o, de fato,
linhas caracteristicas do escoamento. Fato este a ser utilizado no projeto do bocal
divergente a partir de suas linhas de Mach supostas oriundas do contorno da sec¢éo

de area minima, a garganta.

Do exposto, é possivel delimitar as equacdes de compatibilidade para o
método das caracteristicas, permitindo assim sua aplicacdo na determinacdo da
superficie da porcéo divergente do bocal convergente-divergente do missil. Partindo

do numerador da expressao desenvolvida para ¢,, com as velocidades explicitadas:

2 2
(1——2>dydu+ <1——2>dxdv =0=
Y
w__a(1-5)
du . dx 2 (4.29)
(1-%)
c

Substituindo a expressdo encontrada para dx/dy de uma linha caracteristicas,

obtém-se:

(4.30)

Novamente fazendo as substituicdes das equacoes (4.23) e (4.24) em (4.30), pode-

se obter:
d(|[illsend) [M?senfcosf + VM2 —1 (4.31)
d(|lillcos®) (1 — MZ%sen?0)

Que com alguma manipulacédo resulta em, tal como demonstrado em Anderson
(2003):



57

d d 4.32
oy e (4.32)
Il u

Com cada um dos valores de d@ indicativos de uma Unica linha caracteristica,

definidas por C, quando df = +VM? — 1‘1—“ e C_ quando df = —VM? — 1%.

A expressao (4.32) € idéntica a expressdo para o escoamento de Prandtl-
Meyer observada em Zucker (1977), cuja integracdo resulta no valor do angulo de

Prandtl-Meyer. Desta forma, a expresséao (4.32) pode ser reescrita como:

do + dv = (4.33)

Integrando indefinidamente a expresséao (4.33) obtém-se:

60 +v =cte =K|

Tal resultado ilustra que, dependendo da linha caracteristica, os valores da
soma ou subtracdo do angulo do vetor velocidade em relacdo a um dado eixo
definido, sdo constantes e iguais a uma variavel K, similar aos invariantes de
Riemann, tal como ilustrado tanto por Anderson (2003), Hodge (1995) e Shapiro
(1953). Separando cada invariante de acordo com cada uma das linhas

caracteristicas:

v =K. (4.34)

6—v=K, (4.35)

Com (4.34) ao longo da caracteristica negativa e (4.35) da positiva. A partir destes
resultados é possivel seguir com a caracterizacao dos pontos internos da malha de
um escoamento bem como uma eventual interacdo com as paredes. Tal discussao

sera feita na sec¢do que se segue.
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4.2.2.1. Pontos internos da malha

A figura 4.12 traz a representacdo esquematica de 3 pontos a,b e c, interno a
malha fluida, com a e b em duas caracteristicas diferentes e ¢ o ponto de
interseccdo destas. Conforme visto, ao longo de uma mesma curva caracteristica
mantém-se os invariantes de Riemann de acordo com seu tipo, positiva ou hegativa.
Destes valores sabidos, € possivel determinar o numero de Mach no ponto ¢ bem

como sua posicdo no espaco, desde que a dos dois outros pontos ja seja conhecida.

C-

0.5[(0+6.) -(u-+ fue)]

0.5[(0.+8.) +(Lu:+ t2)]

Figura 4.12 — Linhas caracteristicas internas a um escoamento

Para a caracteristica positiva, tem-se:

K, =cte=>0,—v,=6,—v, (4.36)

E para a negativa:

K =cte=0,+v,=6,+v, (4.37)

E facil notar que estas equacées definem um sistema determinado, possibilitando a

obtencdo do angulo de Prandtl-Meyer e daquele do vetor velocidade local em
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relagdo ao eixo das abscissas arbitrado. Do angulo de Prandtl-Meyer é possivel
determinar o nimero de Mach para o caso de um gas perfeito, conforme todo

desenvolvimento feito por Zucker (1977) segundo a expressao:

(4.38)

k-1
arctg \/m(Mz—l) —arctg( M2—1)

E com ele, o angulo de Mach conforme explicitado pela equacédo (4.26). Com estes
valores e sabendo as propriedades de estagna¢ao do escoamento, no caso do bocal
de um missil com escoamento suposto isentrépico (a0 menos longe da parede), as

préprias pressdes e temperaturas da camara de combustéao.

Para finalizar tal analise, resta verificar a posi¢cdo de tal ponto ¢ sabidas as
posicbes dos demais pontos da figura 4.12. Desta figura, nota-se que o angulo de
inclinacdo de cada caracteristica € dado pela média aritmética do angulo que estas
fazem com o eixo das abscissas de referéncia, tal como ilustrado na figura 4.11.
Desta forma, supondo os pontos tdo préximos quanto se queira de forma a sua
conexdo ser feita por segmentos de retas, tem-se que o coeficiente angular das

retas sao definidos por:

1 (4.39)
mg =tg E(Ba + 6. — Uq _:uc)

1 (4.40)
my =tg E(Bb + 6.+ up + phe)

Assim, as equac0des que ligam os pontos consecutivos sdo dadas por:

Ve = Ya + Mg (Xc — Xg) (4.41)
Ye = Yp + myp(xc — xp) (4.42)

Subtraindo a equacgéo (4.42) de (4.41) e isolando x., tem-se que:
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— Yp = Ya + mpXp —MyXg (4‘-4‘3)

E o valor de y, pode ser encontrado substituindo o valor obtido em (4.43) ou em

(4.41) e (4.42).

4.2.2.2. Ponto de parede

A figura 4.13 ilustra um ponto de parede, com ¢ numa posi¢cao tal que o

angulo que a parede faz com a horizontal € dado por 6,4¢qe-

Figura 4.13 — Ponto de parede

Neste caso fica facil notar que a posicdo do ponto c € univocamente
determinada pelo encontro das caracteristicas positiva e negativa. Da caracteristica

negativa, tem-se:

K_=60,+v, = Qparede + Vparede = Vparede = 04 — Qparede + Vg (4.44)
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Determinado este valor, conforme j& visto na sec¢do 4.2.2.1, o numero de Mach e
angulo de Mach podem ser facilmente determinados assim como todas as demais
propriedades. Nota-se, também, que a partir do valor do angulo de Prandtl-Meyer do
ponto da parede € possivel determinar o invariante de Riemann para a linha

caracteristica positiva:

Ky =0, —v, = Hparede — Vparede (4.45)

Para finalizar tal andlise, resta verificar a posi¢cdo de tal ponto ¢ sabidas as
posicbes dos demais pontos da figura 4.13. Desta figura, nota-se que o angulo de
inclinacdo de cada caracteristica € dado pela média aritmética do angulo que estas
fazem com o eixo das abscissas de referéncia, tal como ilustrado na figura 4.11.
Desta forma, supondo os pontos tdo préoximos quanto se queira de forma a sua
conexdo ser feita por segmentos de retas, tem-se que o coeficiente angular das

retas sao definidos por:

1 (4.46)
myg =tg E (9(1 + Bparede — Uq — .uparede)
1 (4.47)
my, =tg E (eb + Gparede + Up + .uparede)
Assim, as equacdes que ligam os pontos consecutivos sao dadas por:
yparede =Ya + ma(xparede - xa) (4'48)
Yparede = Yp T My (xparede — Xp) (4.49)
Subtraindo a equagao (4.49) de (4.48) e isolando x,4reqe, teM-se que:
Yb = Ya T MpXp —MgX, (4-50)

Xparede =

my —Mmgy
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E o valor de y,4reqe POde ser encontrado substituindo o valor obtido em (4.50) ou em

(4.46) e (4.47).

4.2.3. Aplicacdo na determinacdo da geometria da parede de bocais de

minimo comprimento

Este tema € largamente abordado na bibliografia, sendo foco de
particularizagdo tanto de Anderson (2003) bem como de Hodge (1995). Shapiro
descreve como fazer o projeto de um bocal supersénico pelo método das
caracteristicas para bocais de tuneis de vento. Mais recentemente alguns trabalhos
fazem uso da técnica das caracteristicas para projetos de bocais de minimo
comprimento, tais como os de Khan (2013) que, assim como Ali (2002) meramente
propdes um método numérico para o projeto de bocais planos; ou ainda o trabalho
de Zebbiche (2006) que visa o projeto de tais bocais de minimo comprimento para
elevadas temperaturas do escoamento, determinando cada um dos angulos
caracteristico e demais variaveis como funcdo da temperatura. Por fim, vale citar o
trabalho de Olson (2012) acerca da simulacdo em bocais sobre expandidos de

vortices de grande magnitude.

Aqui serdo somente apresentados 0s conceitos fundamentais que permitem
garantir um bocal tdo curto quanto possivel. Esta caracteristica é de sobremodo
desejada neste tipo de maquina uma vez que o0 peso proprio é um fator limitante
quanto a missao a ele destinada, bem como maiores requisitos de empuxo para
eleva-lo até a condicdo ideal de retorno. A figura 4.14 extraida de Anderson (2003)

traz um esquema de um bocal convergente-divergente qualquer.
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Figura 4.14 — Representacdo de um bocal convergente-divergente e suas linhas de Mach (Anderson,
2003)

Ha duas regides tipicas na porcdo divergente deste ente. A primeira é a
regido de expansdao, na qual a aceleracéo do fluido. Esta regido caracteriza-se pela
parede ter concavidade voltada para a porcdo externa a fim de garantir uma
expansdo eficiente, tal como ilustrado por Hodge (1995). A segunda secao visa
eliminar as reflexdes das linhas de Mach, sendo esta inicialmente com curvatura
para a regido interna até se obter paralelismo entre as paredes. Esta situacdo néo é
buscada num bocal de foguete ou de missil. A figura 4.15, também oriunda de
Anderson (2003) traz a situagéo desejada.

e“'max‘ ML

Mewn

,-,__ |
N

Figura 4.15 — Bocal divergente curto (Anderson, 2003)
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No caso da figura 4.15 nota-se que ndo h& a regido de expansao
propriamente dita, sendo esta ocorrendo no espaco mais curto possivel. Isto implica,
para um dado numero de Mach na saida um angulo de inclinacdo maximo inicial
para parede, na juncdo com a garganta definida pela porcdo convergente do
elemento propulsor. A meta que se segue € determinar tal angulo somente em
funcdo do numero de Mach na saida. Para tanto, consideram-se os pontos a,c e b
todos, por hipétese localizados na mesma linha de Mach. Também se assume que a
linha de centro do bocal serve como uma parede com inclinagdo nula em relacéo a

horizontal definida (6,4r¢qe = 0).

Da caracteristica que liga os pontos b e ¢, com b um ponto da secdo de

descarga do bocal, com o numero de Mach desejado na saida.

Ky =06, —wp (Msal'da) =0, —v. =V, =V (Msaida) -0, (4.51)

No limite final da parede externa, supde-se que seu angulo local com relagéao

a horizontal é nulo, implicando na relacao (4.52):

Ve =Vp (Msaida) (4.52)

Tomando procedimento similar em relacdo a caracteristica negativa que

conecta o ponto a (de angulo maximo) e c (parede), tem-se:

K_=0,+v,=v.= Opax + Vg = Vb(Msaida) (4.53)

Sendo o ponto a na garganta, tem-se que o numero de Mach em a é o unitario.

Assim, segundo Anderson (2003), v, = 6,4, aSSim:

1 4.54
Omax = EV(Msal’da) ( )
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Que permite facilmente determinar o angulo méaximo de projeto para o bocal. Tal
informacdo serd de grande valia no desenvolvimento do roteiro de simulacao

computacional.

4.3. PROJETO DE BOCAL CONVERGENTE PELO METODO DA
TRANSFORMACAO HODOGRAFICA

Esta parte do projeto se resume a avaliacdo da melhor geometria para o
projeto da porcdo convergente do bocal convergente-divergente para o missil
proposto. Para tanto, valer-se-a da aplicacdo da transformacéo hodogréafica a fim de
prover maior facilidade na solugdo do problema. Tal método, descrito por Shapiro
(1953) consiste na transformacao do sistema de coordenadas de estudo, no caso
coordenadas de posicdo, para um sistema nos quais as coordenadas séo definidas
segundo velocidades, isto é, a posicdo do corpo passa a ser funcdo do campo de

velocidades tal como:

x = f(u) (4.55)

Naturalmente a transposicdo das coordenadas fisicas para coordenadas
dependentes da velocidade, gera uma distorcédo do problema no plano hodogréafico o
que, segundo Shapiro (1953) acarreta em dificuldades na resolucédo analitica para

casos mais complexos.

O que se pretende ao utilizar a transformacdo hodografica é seguir a
metodologia discutida em Cook (1999) e posteriormente em Kryeziu (2013) para a
determinacdo da geometria de um bocal convergente com condi¢cdes de estagnacgao
as mesmas que aquelas de um tanque ou camara de combustdo. O trabalho de
Kryeziu (2013) é muito mais uma revisdo daquele de Cook (1999), expandindo a
analise também para escoamentos supersonicos. Aqui sera apresentada toda a
construcdo matematica que define o problema do bocal subsonico, para
posteriormente, na secdo de metodologia, aplicar o0 método das diferencas finitas

(MDF) em sua solugcédo. Vale ressaltar que Courant (1962) em meio as suas
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discussOes acerca de equacdes diferenciais parciais alude a este problema quando
trata de equacdes elipticas, caso este a ser tratado aqui conforme sera visto

posteriormente.

A principio, considerou-se o escoamento em questao como irrotacional,
adiabatico, em regime permanentes, ou seja, um escoamento potencial, tal como
feito na secdo 4.2 quando discutido o método das caracteristicas. Tal hipotese
justifica-se novamente pela divisdo dos fendbmenos dentro do escoamento do bocal
nas imediacdes da parede e ao longe, este ultimo suposto potencial. Também
ressalta-se que o método hodografico tem seu desenvolvimento todo baseado

nestas hipéteses, conforme apresentado em Shapiro (1953).

O sistema de equacdes iniciais Uteis para a solucdo do problema estdo na
definicdo da irrotacionalidade, continuidade e de Bernoulli para o escoamento plano
considerado. Neste caso, diferentemente daquele apresentado no capitulo 4.2, tem-
se como coordenada em y o proprio raio do bocal, variavel ao longo do

comprimento. A condicao de irrotacionalidade para o caso plano:

w021 g
= - — =
g ar " ox

(4.56)

A equacdo da continuidade é pouco diferente daquela determinada pela equacéo
(4.11) pela existéncia de um termo caracteristico da axissimetricidade do problema
em questdo dado pela transformacdo em coordenadas cilindricas, tal como
apresentado por Cook (1999) e Coubert (1962):

c? 4.57
(c? —ud)u, —uv(u, + v,) + (c? —vH)v, + XV = 0 (4.57)

E a equacao de Bernoulli:

u2+v2+ ¢ k+1 (4.58)
2 k=1 20-D°
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2 . A = . A - .
Com ¢*" a velocidade sbnica quando Mach = 1 e ¢ a velocidade sbnica local. A figura

4.16 apresenta uma representacdao fisica para o problema.

O T
o B
c__
\ .
O o D t

Figura 4.16 — Representacao fisica do escoamento (Cook, 1999)

Da analise da figura 4.16 podem-se lancar as condi¢cdes de contorno para o
problema. A primeira é relacionada a inexisténcia de componentes radiais de
velocidade na linha de corrente central, ou seja, a hipétese de que no centro do

bocal o escoamento é unidimensional:
v=0parar =0

A segunda condicao de contorno se relaciona a hip6tese de aderéncia a parede do
bocal. Por esta o vetor velocidade é tangente a parede dada a existéncia de uma

linha de corrente também tangente a esta. Assim:
v
tg(—o) = ~na linha OB

A terceira, diz respeito a velocidade do escoamento ao longe da secéao de descarga
do bocal, no caso, a velocidade sénica. Para o projeto em questéo, calcular-se ha
para diferentes inclinacdes do bocal a posicdo em que se tem o escoamento sdnico
9ou ao menos aproximadamente s6nico) bem como a determinagcédo das linhas de
corrente caracteristica no plano fisico, permitindo assim estender toda a superficie
do bocal de tal maneira que se obtenha o escoamento sbnico na garganta. A

condigao:



68

||u]l = Vu? +v? - 0 quando x —» o

Por fim destaca-se a condigdo de contorno acerca do escoamento em uma linha de
corrente qualquer. Nesta o escoamento é suposto homentrdpico, isto €, com
entropia constante ao longo de uma linha de corrente (Cook, 1999) e a velocidade é

constante:

dr v
lull = vu? +v2 =uje—= ”

dx

Com a alteracdo das coordenadas para o plano hodografico, a indefinicdo da
posicdo da linha de corrente deixa de existir, facilitando a analise. A condi¢cdo de

irrotacionalidade se torna:

0x ar_
ov  ou

. (4.59)

E a equacgao da continuidade:

c? 4.60
(c2—ud)r, —uv(x, + 1) + (c? —vH)x, + X?v(xur,, —x,1,) =0 ( )

v2z, — w(ry + T,) + u?r, =0

Figura 4.17 — Representacdo do problema no plano hodogréfico (Cook, 1999)
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Antes de continuar com as condi¢Bes de contorno em plano de analise modificado
tal como na figura 4.17, Cook (1999) apresenta os potenciais de Legendre como
alternativa ao plano hedografico. Tal potencial é definido de maneira bastante
parecida em relacdo ao potencial de velocidades, entretanto a derivada deste em
relacdo as componentes do vetor velocidade fornece a posi¢do no plano fisico. Por
conseguinte, sua definicdo é dada por:

od (4.61)
X =—

Ju

0d (4.62)
r=——

ov

Sendo este concatenado ao potencial de velocidades por:

d(u,v) =xu+rv—o(x,r) (4.63)

Aplicando as transformacdes na equacao (4.60), tem-se em termos de potenciais de

Legendre a equacédo da continuidade:

X X X X c*v . (4.64)
(a —u )q)vv + Zuvq)uv + (C -V )(Duu +Xq)_v((buuq)vv - (Duv) =0

Com y igual a 0 quando o escoamento é plano e igual a um quando o escoamento é

axissimétrico. Esta equacéo pode ser dividida em duas parcelas distintas:

L[®] = (a® —u?)D,, + 2uvd,, + (c? —v?)d,, (4.65)
cv (4.66)
N[®] = E (P q)lzw)

A primeira parcela também ¢é discutida em Courant (1962). Esta se trata de uma
equacao diferencial parcial de Monge-Ampere. Cook (1999) ainda ressalta que que
seu tipo depende do numero de Mach do escoamento: se M > 1 o problema é

eliptico, caso contrario, se M < 1, o problema é hiperbdlico. Desenvolvendo a
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expressao (4.65) de forma a eliminar qualguer componente de velocidade, a partir

da substituicéo |[u|| = Vu? + v? e tgf = v/u:

Ue+ D (e — ) (4.64)
(k + 1)c** — (k — D||lull? (| Py + Pos)

L[®] = [[wll* @ ey +

Desenvolvidas as expressfes em termos dos potenciais de Legendre, resta
apresentar as condicdes de contorno segundo as transformacdes realizadas. A
condicao de contorno relacionada a aderéncia da linha de corrente a parede se torna

uma condi¢do de Neumann dada por:

0P

el =0
00 lg-0ep=-5

A condicao de velocidade constante ao longo de uma linha de corrente genérica BC
também é uma condi¢cdo de Neumann:
R fofe

oz T lullo 55—

962 alull =0

‘ llull=llullo

A condicdo de contorno relacionada as condicOes de estagnacéo se trata de uma

condicéo de Dirichlet:
Pljjug=0 = 0

Finalmente, a ultima condi¢do, também de Neumann, passa a ser a altura da secédo

na qual o escoamento é sbnico, isto é:

0P

o =0
90 19=0 ¢ Jfull=llull,

A figura 4.17 ilustra o problema no plano 6x||u||, sendo tal extraida de Cook
(1999).
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7]
—0
(o) DC q
ff)ﬁ = Qoh
@)
»=0 $eo + qog =0
- ¢pg =0 B

Figura 4.18 - Problema apresentado no plano 6x||u||

4.4. ESCOAMENTO QUASE-UNIDIMENSIONAL EM BOCAIS
CONVERGENTE-DIVERGENTE

A figura 4.19 ilustra a situacdo em analise. Ela apresenta uma se¢do de um
bocal convergente-divergente com variacéo infinitesimal das propriedades entre a
secdo 1 e 2 distantes dx uma da outra. O escopo desta analise € determinar as
variacdes infinitesimais para estas propriedades ao longo do tempo e da direcao x,
paralela ao eixo do elemento, e com estas, modelar o fenbmeno do escoamento

compressivel a partir de equacdes diferenciais parciais adequadas.
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p+dp
V+dV
A+dA
e+de

Figura 4.19 — Bocal quase-unidimensional convergente-divergente

Para a determinacdo da equacao da conservacdo da massa, inicia-se
avaliando a equacéo da continuidade em sua forma integral, tal como apresentada
em Anderson (1995)

%WV.C' pdV + ﬂs.ap(ﬁ -7)dS =0 (4.65)

O segundo termo da equacao (4.65) equivale a verificar os fluxos de massa
através das superficies de controle. De fato, ela representa a variacdo temporal da
massa atraves das superficies do volume de controle unidimensional adotado na
figura 4.19. Na se¢do a montante tem-se que o vetor velocidade faz um angulo de
180° com a normal da superficie, desta forma o valor do produto apresentado sera
negativo. O contrario ocorre na superficie de saida, isto é, o vetor velocidade do
escoamento nesta secdo estd na mesma direcdo e sentido da normal
(convencionada positiva apontando para fora da superficie de controle), acarretando

em valor positivo do produto escalar. Naturalmente ndo ha vazdo massica nas
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superficies laterais dado que ndo h& componentes, por hipdtese de escoamento
guase-unidimensional, de velocidades ndao-perpendiculares as normais destas

superficies.

O primeiro termo da equacao (4.65) traz uma integral tripla no volume de
controle, implicando que este termo avalia a taxa de variacdo temporal da massa
total no interior do volume de controle. Este é o termo que indica se ha ou ndo
acumulo de massa ao longo do tempo no interior do volume de controle, sendo
assumido nulo no caso da andlise em regime estacionario, no qual ndo ha interesse
no carater transitério de, por exemplo, uma camara de gas esvaziando. Do exposto,
pode-se dizer que a equacéao (4.65), em termos dos parametros da figura 4.19 ode

ser reescrita como:

d(pAdx)

T [(p+dp)(A+dAV +dV)] - pAV ¢ =0=

Descarga Entrada

Fazendo a distributiva e desprezando os termos de 22 ordem:

d(pAdx)
=>T+pAdV+deA+VAdp =0=
d(pAdx) d(pA) 0d(pAV) (4.66)
=— +d(pAV) =0= 3t + e =0

Que é a equacao da continuidade para o caso de um escoamento quase-

unidimensional.

A equacédo da conservacao da quantidade de movimento também pode ser
obtida de maneira semelhante a da continuidade. Em sua forma integral, para o caso

de um fluido nao-viscoso, tem-se:
0 o (4.67)
—Uj pudV+U pu(V-n)dSz—U pdS,
at V.C. S.C. S.C.

O primeiro termo da equacéo (4.67) diz respeito a quantidade de movimento
associada ao deslocamento da massa fluida contida no volume de controle na
direcdo x, desta forma, quando integrada ao longo do elemento infinitesimal &

idéntica a (pVAdx). A segunda integral da expresséo, esta avaliando a taxa de
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variacdo do momentum nas superficies de controle do volume fluido. Novamente
ndo ha componentes avaliaveis nas fronteiras laterais do volume de controle dada a
perpendicularidade entre estas normais e a componente de velocidade do
escoamento, restando, novamente, somente a avaliagdo em cada uma das
superficies de controle perpendiculares ao eixo de simetria axial do bocal. Seu valor,
em termos das propriedades expressas na figura 4.19 e desprezando termos de 22
ordem ou superiores:

ff pu(V - R)dS = [(p + dp)(A + dA)(V + dV)?] — pAV? =
S.C.

S (4.68)
= ff pu(V -1)dS = AV2dp + pV2dA + 2pAVdV = d(pAV?)
S.C.

O termo de pressado apods a igualdade é de mais dificil avaliacdo. Anderson
(1995) apresenta uma figura com as forgas relacionadas ao campo de pressoes
aplicadas a cada face do volume de controle da figura 4.19. Estas resultantes estéo

reproduzidas na figura 4.20.

(pdS),=-p ‘—%‘1 _____
4" X
(pr dS), =-pA
- —
(p dS), =(p + dp) (A+dA)
(pdS), =-p ‘?‘ _____

J
b roffe e

Figura 4.20 — Distribuicédo das forgas relacionadas as pressodes atuantes no elemento fluido
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Da avaliagdo da figura 4.20, conclui-se que a integral das for¢cas de pressao
sobre as superficies de controle orientadas segundo o eixo x, 0 de simetrial axial &

dada pela expressao (4.69).

f f pdS, = [(p + dp)(A + dA)] — [pA + pdA] =
S.C.

(4.69)
= ff pdS, = Adp
S.C.
Substituindo (4.68) e (4.69) em (4.67):
d(pVAd
—(pat ) 4 d(pAV?) = —Adp =
d(pAV) d(pAV? d
=>(p )+(p )+A_p (4.70)
ot dx dx
Multiplicando a equacéao (4.66) por V e subtraindo da equacéao (4.70):
a(pAV) d(pAV?) d(pA) _ d(pAV)
ot o +A6x V=t Vo
<A6V+ VaA+Avap> (21/ PR V26A+szap)+,46p
PR TP Bt F PRax TP 3 ax) " ox
( VaA+AVap> ( p2 24 a2 9P AV6V> 0=
ST at) ~\P" ox ax P ox) T
pa v 4%
PR TP ax T Pax T
N P LA 7
Pac TP ox o~

Que é a equacao da quantidade de movimento para 0 escoamento quase-
unidimensional.

Por fim, equacdo da energia pode ser obtida da mesma maneira. Antes,
ressalta-se que, para 0 caso analisado, as seguintes hipoteses sdo validas:

escoamento adiabatico, sem realizagédo de trabalho através de for¢as viscosas, mas
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tdo somente pela acdo do capo de pressodes. Desta forma, a equacdo da energia na
forma integral (Anderson,1995):

%fﬂ”-ﬂ(e +V72> dv + ffmp<e +V72> (V.ﬁ)dg _ _ffs_clp(v'ﬁ)ds (4.72)

O mesmo procedimento dos casos anteriores sera aplicado. A integral tripla
descreve a variacdo da energia total no interior do volume de controle, sendo dada

por:
fff p<e+V72>dV:p<e+V72>Adx (73)
v.C.

Ja a segunda integral do lado esquerdo da igualdade (4.72) diz respeito ao fluxo de
energia que entra e sai do volume de controle através das superficies de controle
nas quais a direcdo da velocidade do escoamento ndo € perpendicular a normal. A

equacao (4.74) demonstra o equivalente da integral de area.

VZ

v\ . (V + dv)?
ﬂ p(e+7>(V-n)dS={(p+dp)[(e+de)+f (V+dV)(A+dA)}—p<e+7)AV$
s.C.

=>HP<+V7> (7 -7)as

1
= (peAdV + peVdA + pAVde + eAVdp) + 5 (3pAVZdV + pV3dA + AV3dp) =
=d(peAV) =d(pAV?)

YR 1 (4.74)
= H_;_C_p (e + 7) (V ' n)dS = d(peAV) + Ed(pAVB)

O termo de pressdes pode ser definido segundo as pressdes da figura 4.20.

ff p(l_/ -1)dS = [(p + dp)(A + dA)(V + dV)] — [pAV + pVdA] =
s.C.
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, 4.75
= ﬂ p(V -1)dS = pAdV + pVdA + VAdp = d(pAV) (75)
S.C.
Substituindo (4.73) a (4.75) em (4.72):
d 2 d(peAV) 10(pAV3) 0(pAV (4.76)
_pe+_A+(pe )+_(p )+(p ) _ o
Jat 2 0x 2  Ox dx

Que é a equacdo da energia na forma conservativa. Com mesmo artificio utilizado
para obtencdo da equacdo da quantidade de movimento sera determinada a
equacdo da energia em sua forma ndo conservativa. Multiplicando a equacédo da

continuidade pela energia interna e subtraindo da equagéo (4.76):

0 ( v2>Al+a(peAV)+1a(pAv3) L20AV) _ 3GpA)  aGA)

aclP\ét 7 ox 2 ox xS ot ¢ ox
- Aae+ AV(')e_ a(AV):> Aae+ Avae_ VaA Aav:>
PGt TP 5% T TP o PG TP o T TPV 5 T PP %%
- 6e+ Vae_ pV 0A OV:
Poacr TP ox~ "aox Pox
_ ae+ Vae_ Valn(A) av (4.77)
Poc TP ox = P Tax  Pox

Para um gas perfeito, a energia interna é dada por:
e =c,T

Desta forma, equacao da energia pode ser reescrita em termos do calor especifico a

volume constante, resultando em:
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oT oT dln(4) v (4.78)

=>pch+pcha—x=—pV ox Poax

Ou ainda em termos da razao de calores especificos, sabendo que:

¢p C,+R R
_:—: CU:—

k=
Cy Cy k-1

Com R a constante dos gases ideais para o fluido de trabalho. Substituindo esta
expresséo em (4.78):

pR 0T pRV oT _ dln(A) v (4.79)

k—10t Tk—19x P "ax Pox

4.5. ESCOAMENTOS TURBULENTOS

Com o escopo de simular o escoamento viscoso através do bocal
convergente-divergente  proposto ao missil, serd empregada simulacdo
computacional através do método dos volumes finitos através da utilizacdo de um
software comercial. Para tanto faz-se necessario apresentar os fundamentos deste
método de maneira bastante resumida a fim de fornecer os principios necessarios

para a solugcdo dos casos propostos.

4.5.1. Conceitos fundamentais

Conforme exposto em Maliska (2013) e Malalasekera (1995), as equacdes
diferenciais que regem os fenbmenos de transporte do escoamento podem ser
representados genericamente por uma equagado que além do termo transiente traz

consigo os termos relacionados ao transporte convectivo, difusivo além do termo
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fonte. Se escrita em termos de ¢, qualquer propriedade por unidade de massa, tem-

se que:
d(pg) (4.80
o TV (id) = V- (TpVe) + S )
Paraocasode ¢ =1,s4 = 0e Iy =0, tem-se a equagdo da continuidade:
0 4.81
a—p +V-(pi) =0 (4-81)
Jase¢p=T,Ir =k/cy, Sp = LE +— £ @ - com @ o termo de dissipag&o viscosa, k 0

p

coeficiente de condutividade térmica, ¢, 0 calor especifico e u a viscosidade do

fluido — tem-se a equacéo da energia (ou 12 Lei da Termodinamica):

1DP u (4.82)

9(pT) + V- (puT) = v-(?w) F——+—@
14

Jt

Com ¢ = u; e T, = u, tem-se cada um dos componentes da equacgao da quantidade

de movimento, com i =1, 2 e 3 respectivamente correspondendo as dire¢des x, y e z

num sistema de coordenadas -cartesiano, tipicamente utilizado com malhas

estruturadas.
9I(pw) __P O,0u_2 I AT (4.83)
ot TV (i) =V (W T < ax 3hV ) ay<“ax)+az(“ 6x)
o) o o ov 2 0 (,2uy, 0 (0w (484)
Jat TV (piv) = V- (V) y+6y<'u6y 3,uV ) ox <H6y>+6z<u 0y>
d2(pw) op 90w 2 _ 0 ( Ou 0 ( Ov (4.85)
g+ U0 = Vv ot (w5 1) + o () + 5 (k)

O conjunto de equacbes de (4.80) a (4.85) somadas a equacdo de estado para
gases ideais ou reais, sao suficientes para a solucdo de escoamentos a baixas
velocidades em regime laminar. Entretanto, quando se trata de escoamentos através
de bocais convergente-divergentes ha uma grande variacdo da velocidade ao longo

do percurso desde a camara de combustéo até a secao de descarga do bocal. Desta
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forma ndo se tem escoamento puramente laminar ja que o numero de Reynolds
cresce de maneira muito rapida, garantindo que h& escoamento turbulento ao longo
do escoamento, fazendo-se necessario lidar com este fendbmeno ao resolver o

escoamento.

De maneira bem simplista, a turbuléncia € um fenbmeno caracterizado por
oscilagbes cadticas e aleatorias das propriedades do escoamento ao longo do
tempo. Este tipo de escoamento é regido pelas for¢as inerciais do fluido e
caracterizado pela presenca de vortices de diferentes dimensdes que transferem
particulas fluidas de uma regido para outra, acarretando em bruscas mudancas de
momento e garantindo misturas mais eficientes (dai a necessidade desta em
motores a combustdo que utilizam ciclo Diesel). O tratamento matematico para tal
consiste na formulacdo de que uma propriedade pode ser representada por um valor

meédio adicionado de uma varia¢éo, dado por:

Substituindo esta expressédo nas equacotes (4.80) a (4.85) e tomando seu valor
médio é obtido um sistema de equacBes que leva em conta as flutuacdes
carateristicas de escoamentos turbulentos a partir de termos denominados tensdes
de Reynolds. Este conjunto de equacdes é dado pelas equacdes (4.86) a (4.90),
conforme listadas em Malalasekera (1995), para o0 caso de escoamento

compressivel.

%Jrv_ (%) = 0 (4.86)

OG0 -y = - L) AGED) I,
6(57) £V (piw) = V- (uvw) - Z_IZ’ N :_ a(ﬁ;:c’u') _ 6(ﬁav;'v’) _ a(f;vzv_'z)] vs, (489
6(5?) + V- (T = V- (uVT) + _O(T) ~ a(ﬁ;y'T') ~ 6(ﬁ;vZ'T')] s, (4.90)
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A solucdo deste conjunto de equacdes, denominado Reynolds Averaged
Navier-Stokes (RANS) ou Favre Averaged Navier-Stokes traz dificuldades
computacionais tendo em vista a escala de tempo e de comprimento dos fenbmenos
envolvidos. Ha, conforme exposto em Malalasekera (1995) trés principais modos de

solugéo para tal conjunto de equacoes.

O primeiro diz respeito a simulacdo de grandes vortices, baseado na
simulacdo em regime transiente que computa os vortices de maior dimensao
rejeitando os de escalas de comprimento diminuta, que passam a ser considerados
a partir da adocdo de um sub-grid. Este problema traz dificuldades em relagédo ao
tempo de processamento dada a necessidade de simular todo o transiente em

malhas pequenas além de problemas com geometrias complexas.

A solucdo direta da RANS se mostra de dificil implementacdo até os dias
atuais tendo em vista a escala diminuta do fend6meno da turbuléncia tanto em termos
de tempo como em escalas de comprimento, requisitando malhas muito finas e
passos temporais muito diminutos a fim de capturar toda a histéria do escoamento,
garantindo, desta forma, convergéncia. Dadas estas necessidades, ndo h& recurso
computacional disponivel para a solucdo direta de maneira adequada, inviabilizando

Seu uso.

Por fim h4 o tratamento das equacbGes a partir do uso de modelos de
turbuléncia para a solu¢do do escoamento. Esta modalidade de solucéo consiste em
analisar as propriedades médias do escoamento e o efeito que as variacbes impdem
sobre estas através da inclusdo de novas equacgfes ao sistema ja explicitado. Em
geral sdo classificados de acordo com o numero de equacdes diferenciais que
introduzem a resolugdo do problema, tal como explicitado em Cebeci (2004),
literatura esta que em conjunto com ANSYS (2009) traz discussfes acerca de uma

série de modelos de turbuléncia.

No presente caso sera utilizado um modelo de turbuléncia de duas equacdes
diferenciais baseado nas hipoteses de Boussinesq para as tensdes de Reynolds a

ser discutido brevemente posteriormente. Antes, vale uma revisao acerca de dois
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modelos de duas equac0Oes diferenciais bastante difundidos: k — € standard e k — w

standard.

4.5.2. Modelos de turbuléncia

45.2.1. O modelo k — € standard

O modelo k — € standard é basedo no conceito da viscosidade induzida pelos
voértices. Sua nomenclatura se deve as variaveis introduzidas na resolucdo das
equacdes diferenciais: k a energia cinética turbulenta e € a taxa de dissipacdo

viscosa, dadas por:

kZEWW

_ uou Oy

€= pox, ox,

Os valores de k e € sédo utilizados para definir as escalas de velocidade e

comprimento caracteristicos do escoamento turbulento, dados por:

N W

k

{=—
€

N[~

9=k

As equacdes introduzidas no sistema de equacdes formado pelas RANS sé&o
analogas aquelas de transportes ja deduzidas, sendo sempre um balan¢o das taxas
de geracdo de k e €, transporte convectivo e difusivo das propriedaes, além das
taxas de producao e destruicdo das mesmas. As equacbes (4.91) e (4.92) trazem

ambas equac0es diferenciais.
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d(pk) (4.91)

ot

d(pe) _ e € €’ (4.92)
5% + V- (pue) =V- (0 Ve) + 2C15Ellt5ij “Sij — CZEp?

€

k

Com u, a viscosidade induzida por vértices, dada, através de analise dimensional,

pela equacao (4.93).

k? (4.93)
He = pCu?

Sendo, também, S;; o tensor de deformacé6es, dado por (4.94).

Syx Syy Syz
Szx  Szy  Szz

[Sxx Sxy sz] (4.95)

Com

B ou N ou’
Sax = 5 T ox

B ov N v’
Syy = ay ay

_ ow ow’
S22 = 5, " 8z

Sxy = Syx

_1fo(u+u) dw+v)
_§< dy + 0x )

_1fou+u) ow+w)
E( oz | ox )

1/fow+w") dw+v)
=S = — +
2 dy 0z
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Conforme previamente dito, o modelo k — € standard é baseado nas hipGteses de
Boussinesq, garantindo que as tensfes de Reynolds sejam dadas pela equacéo
(4.96).

2 4.96
Com §;; o tensor delta de Kronecker, o qual § =1 quandoi=je § =0quando i # j.

As constantes adotadas para o modelo s&o resumidas na tabela 4.1 e foram
adotadas a partir de extensa interpolagédo em variados escoamentos turbulentos.

Tabela 4.1 — Coeficientes usuais para o modelo k — € standard

Coeficiente Valor
Cy 0,09
0y 1,00
o, 1,30
Cic 1,44
Cae 1,92

Este modelo traz dificuldades na avaliacdo das caracteristicas do escoamento
nas proximidades da parede, dai a necessidade do uso de fun¢des de parede,
principalmente para avaliagdo do escoamento nestas proximidades em valores de
numero de Reynolds grandes e com gradientes adversos de pressédo. Tal problema
foi extensivamente estudado, destacando-se os extensivos esforcos de Spalding
(1970, 1973, 1977, 1980) em gerar e demonstrar resultados obtidos por outros
pesquisadores. Malalasekera (1995), propde o uso de fungdes de parede tais como
descritas por (4.97) e (4.98).

u? ud (4.97)

1
ut = ;ln(EyJ),k =

o 4.98
T+=0T,t<u++P Ll) (4.98)

Or¢t
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Com k = 0,41 a constante de Von Karman, E = 9,8 como parametro da rugosidade
da parede, or, 0 nimero de Prandtl turbulento, o7, = uC,/I'r 0 nimero de Prandtl
laminar, com I'; a condutividade térmica. P € uma funcao de correcdo que depende

da razao entre os numeros de Prandtl laminar e turbulento.
45.2.2.O0modelo k — w

A maior diferenca entre este modelo e 0 modelo k — € esta na escolha da
escala de comprimento utilizada, deixando de ser baseada na taxa de disspacao

viscosa, €, e passando a se basear na frequéncia turbulenta, dada por:

_6
=%

Garantindo que:

e |5

As equacdes de transporte sdo parecidas com aquelas do modelo k — ¢, sendo

dadas por:

d(pk)
ot

(4.99)

4V (pitk) = V- (%w) + P, — B pkw
k

d(pw) (4.100)

Jt

— He 2 aui 2
+ V- (puiw) =V- <u+—)Va) +v1| 20Sij - Sij — 5 pw 56 | — Bipw
o, 3" 0x;

w

Com

aui

6xj

2
Py = 2uS;; - Sij — z pk

3 %ij

E os coeficientes listados na tabela 4.2.
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Tabela 4.2 — Coeficientes usuais para o modelo k — e

Coeficiente Valor
Y1 0,553
Oy 2,00
o, 2,00
By 0,075
B* 0,09

As tensdes de Reynolds sdo dadas por:

— aui_l_auj 2 ks
E
_ k
He —Pw

Esta abordagem é vista com bons olhos tendo em vista a habilidade em lidar
com regides proximas as paredes, onde os efeitos viscoses e gradientes adversos
de pressdo sao importantes, sem a utilizacdo de funcbes de parede para amortecer
a solucdo. A grande dificuldade em sua aplicacao reside no fato da dependéncia da
solucdo do valor adotado para w em escoamentos livres, tal como em regides

distantes a um corpo imerso em fluido, o que acarreta em resultados errados.

4.5.2.3. Modelo k — w SST (Shear Stress Transport)

Este modelo, proposto por Menter, alia as vantagens de cada um dos
modelos previamente apresentados. Ou seja, a habilidade do k — e em lidar com
escoamentos a distancia da parede e o tratamento adequado do k —w para o
tratamento proximo as paredes. Isto faz dele um modelo bastante adequado para

aplicacoes gerais na simulacdo computacional de escoamentos.

Em termos de equagbes, Menter basicamente utilizou a equacédo diferencial

para a energia cinética turbulenta oriunda do modelo k — w e substituiu € por kw a
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fim de obter uma nova equacéo diferencial para w. Resumidamente sédo dadas pelas

equacoes (4.101) e (4.102).

a(pk 4101
£+v-(pak)=v-(ﬂVk)+Pk—,8*pkw (4.101)
at (g%
d(pw) -
R + V- (piw)

Us 2 aui 2
=V (\rr o Ve ) e\ 208 Sy —gpe gty | = Bpw (4.102)

w,1

p Ok dw

Ou,2 0Xy 0Xy

Novos coeficientes foram obtidos para o modelo, sendo eles listados na tabela 4.3.

Tabela 4.3 — Coeficientes usuais para o modelo k — e SST

Coeficiente Valor
V2 0,44
Oy 1,00
Opa 2,00
0.2 1,17
B 0,083
B* 0,09

Sabendo que utilizar a abordagem do modelo k —e para o cbmputo das
propriedades ao longe e do k — w para o das propriedades proximas a parede, ha,
invariavilemente, transicbes bruscas entre as regides o que requer funcdes que
“relaxem” as propriedades. Um exemplo se da tomando o termo C; do modelo k — ¢

e C, do modelo k — w, acarretando em:
C=CFR+0-F)G

Tal como ilustrado em Malalasekera (1995). F. € um termo de relaxacdo que
depenede tanto das escalas de comprimento quanto do niamero de Reynolds, sendo
escolhida de modo que, de maneira suave, seu valor seja nulo na parede e tenda a

unidade ao longe.
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Além da questdo das transicbes abruptas serem suavizadas a partir de
estratégia parecida com a relaxacdo, Malalasekera (1995) destaca também a
limitacdo da viscosidade induzida por vértices a fim de garantir adequada solugéo
em regides com gradientes de pressdo adversos, bem como limitacdo da taxa de
producdo da energia cinética turbulenta a fim de evitar acumulo de turbuléncia em

regibes estagnadas.

a,pk

He = max(alw, FZ«/ZSij : Sl])

, % 2 aui
Pk =mn 103 pkw'zlutSUSU__pka_(SU
]

3

Dadas as caracteristicas 6timas deste modelo de turbuléncia no tratamento
completo de um escoamento, bem como 0 menor requisito computacional para a
solucéo do problema dada a inclusdo de poucas equacdes diferenciais ao problema,
diferentemente do que ocorreria com a simulacdo do escoamento utilizando o
modelo das tensfes de Reynolds o qual inclui nimero muito maior de equagoes,
este sera o modelo utilizado para a simulacdo do escoamento no interior do bocal

convergente-divergente.
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5. METODOLOGIA

5.1. AVALIACAO PRELIMINAR DO SISTEMA DE PROPULSAO PARA O
CASO UNIDIMENSIONAL

5.1.1. Determinacdo da pressdo na camara de combustdo em funcédo do

tempo

Esta determinacdo se baseia na aplicacdo do balanco de massa ou equacao
da continuidade aplicada a um sistema de propulsdo genérico dado pelo volume de

controle da figura 5.1.

D.
Do

2y

@

®

Figura 5.1 — Modelo simplificado de um sistema de propulséo de combustivel sélido

N&do ha qualquer vazdo massica entrando no volume de controle, mas tao
somente saindo, sendo esta uUltima dada pela vazdo massica através do bocal. Por
hipoteses simplificadoras, assume-se um bocal convergente-divergente com

escoamento unidimensional de um gas perfeito, sem troca de calor ou trabalho de



90

eixo, com efeitos gravitacionais despreziveis e efeitos cinéticos despreziveis em
relacdo a variacdo de entalpia. A vazdo massica neste, desde que operando

blocado, € dada pela vazao massica na garganta deste componente, assim:

Msqi = Mpocal = pgargantaVgargantaAgarganta (51)

Desta forma, sendo o gés perfeito, segundo os indices da figura 5.x:

. p
Teg; = —— Myy[KRT,A, (5.2)

Mas, do escoamento isentrépico de um fluido compressivel tem-se que

Kk
k-1 k1
P0=Pi<1+TMi>

Com o indice 0 representando o estado de estagnacao e, i a propriedade estatica.
Neste caso, 0 estado de estagnacdo é dado pela prépria presséo e temperatura no
interior da camara de combustdo, amos variaveis com o0 tempo. Estes estados de
estagnacdo podem ser demonstrados aplicando a 12 Lei da termodinamica ao
escoamento bem como a expresséo da relacdo de pressdes de estagnacao para o
processo isentropico, tal como demonstrado em Zucker (1978). Fazendo as

substituices na expressao da vazao massica que sai do volume de controle:
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1 (5.3)

A vazdo massica gerada é dada pela formacdo de gases de combustdo a
partir da queima do propelente solido, podendo ser quantificada segundo a equacédo
5.4.

mger = PcombTAcomb = Pcomp (apcn)Acomb (5.4)

Com p.,mp @ Massa especifica do combustivel e A.,,,, @ area de queima do

propelente sélido, variavel com o tempo segundo

Dy
ACOTle (t) = 2nL (7 + Tt)

com D, o diametro inicial da cavidade interna, L o comprimento do grdo propelente
para o caso de um cilindro vazado, caso a ser analisado no presente texto. E notério
gue a area limite é dada pela carcaca da camara de combustdo, sendo a vazao
massica gerada nula quando este limite ocorrer, isto é, quando deixar de haver
propelente a ser queimado ndo ha mais geracdo de gases, mas tdo somente o

escoamento daquele que ja ocupa o volume da camara até que esta se esvazie.

Por fim é necessario avaliar a taxa de massa acumulada no volume de

controle, sendo esta dada por:

_dlogh) % dpy 65)
Mac =g “Pagr T
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com V, o volume ocupado pelos gases oriundos da combustao, variavel conforme se
processa o consumo do gréo-propelente; e p, a densidade dos gases produzidos no

processo de combustéo que, se supostos perfeitos:

. _ Pc dl{g Vg dpc _ pcAcomb n Vg dpc (5-6)
Mac “RT, dt "RT, dt | RIT, P TRI, at
TAcomb

Assim, do balan¢o de massa:

Mge = Mene — Mgqi + Mger =

{

k+1

k-1
pcAcomb n Vg dpc k 1
—Q5Hr AP S = ~PcMAy | | + peomb(@P™)Acomp =
RT, RT, dt RT, 1+ k . 1M22
et
k-1
dp. RT, p k 1
= = alcomp (.D b - >pcn —p.M3A; —
dt Y, comb  RT, c RT.\ 1 K . 1 M,

Que é uma equacao diferencial ordinaria ndo homogénea. Tal serd implementada
computacionalmente através do método de Runge-Kutta de 42 ordem, havendo
substituicdo da area de combustédo pela relacdo que leva em conta uma geometria
particular. Desta forma, pode-se dizer que esta € uma expressao simplificada geral

para avaliacdo da pressédo da camara da combustdo em fungcéo do tempo.

Nota-se que néo foi levado em conta que o bocal esta blocado, tendo em vista
que esta condicdo depende da pressdo no interior da camara de combustédo e da
pressdo externa. A cada instante da rotina de solugéo da equacédo diferencial tal

condicdo sera verificada, bem como a atualizagdo de cada um dos parametros



93

variaveis com a pressdo, no caso a temperatura no interior da camara de
combustéo. Também serdo atualizados a area de combustéo e o volume no interior

da camara.

Em uma primeira aproximacdo, dadas as hipoteses ja consideradas, sera
assumido que cada etapa de integracdo da equacao diferencial sera um processo
quasi-estatico, desta forma, a relacdo entre pressdo e temperatura no interior da

camara de combustdo sera dada por:

k-1

(Pcin k-
TCi+1 - < plC. ) TCi
l

5.1.2. Determinagédo do empuxo num bocal unidimensional

A forca de empuxo associada ao escoamento de gases de combustédo baseia-
se na conservagdo da quantidade de movimento. A expressado que possibilita seu
computo, encontrada em Taylor (2009), Zucker (1978), Zucrow (19xx), Shapiro
(19xx), Sutton (2001) dentre outras, e de facil deducéo é dada pela expressao (5.7).

F=mV; + (p3 - preceptor)AB (5.7)

Com o indice 3 tal como apresentado na figura 5.1, desta forma, V5 é a velocidade
na sec¢ao de descarga do bocal, p; € preceptor @S Pressoes na sec¢ao de descarga do
bocal e do receptor (ambiente, no caso), respectivamente. m € a vazao massica no
bocal. Esta expressao fornece meios quantitativos de estimar a forca de empuxo
fornecida por determinada configuracdo e tipo de propelente solido, permitindo
verificar se fornece a forca necessaria para decolagem e ascensao do artefato, no

caso, do missil balistico.
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A velocidade na sec¢do de descarga pode ser estimada a partir das hipotese ja
enunciadas na secao 5.1 para o escoamento no bocal, sedo esta dada por:

(5.8)

1+TM32

T,
Vs = M3 JkRT; = m]mﬁ

Com o numero de Mach na secéo de descarga podendo ser determinado a partir da

razao de areas entre esta secao e a garganta, supostas como variaveis de projeto:

k+1
,12(k=1)

==

ﬁ_% 1+(;1)M3

A Mgy (oD,

| |INo

N

Analogamente, a pressao na secao descarga é dada por:

E a vazdo massica, da equacédo da continuidade, pode ser dada pela prépria vazao

na secao da garganta do bocal, conforme a equacgéo 5.9:

k 1 (5.9)

RTe 1+—k;1M22

m, = pcMzA;
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Assim, fazendo as substituicdes adequadas, a equacao 5.7 pode ser escrita

como:

k+1

k-1

1 1 / p \ 5.10

F =kp.M,M;A, k=1 k=1 + | < 7w — Preceptor |A3 ( )
M2\ 1+ M,? \ 1

1+~ >

2

O empuxo pode ser avaliado conforme o tempo de combustdo segundo
variacdo na pressao do interior da camara de combustdo, cuja equacéao diferencial

gue rege o fenémeno ja fora deduzida na secédo 5.1.

5.2. PROJETO BIDIMENSIONAL DE UM BOCAL CONVERGENTE-DIVERGENTE

5.2.1. Projeto da porcéo divergente pelo método das caracteristicas

Para a aplicacdo do método das caracteristicas para a determinacdo da geometria
de um bocal divergente de minimo comprimento utilizou-se uma solugdo numérica
baseada no equacionamento proposto em Hodge (1995) e Anderson (2003), ja
exposto na secao 2.2 da revisdo bibliografica. Aqui sera descrito em detalhes como

se estruturou o programa.

5.2.1.1. Determinacéo dos valores de 6,v,K,,K_,M e u

Como ponto de partida para a determinagcdo das propriedades de cada
caracteristica, isto é, os invariantes de Riemann positivo e negativo, angulo do vetor
velocidade em relacéo ao eixo das abscissas - aqui suposto horizontal — bem como

o angulo de Prandtl-Meyer, angulo entre a caracteristica e o vetor velocidade e
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também o nimero de Mach, é necessério se dispor do nimero de Mach na secao de
saida o que possibilita o célculo do angulo méaximo da sec¢éo de expansdo do bocal,

segundo:

1 5.11
Omax = E V(Msaida) ( )

Com:

k+1 k-1 /
v(M) = = arctg m\/Mz—l —arctg( M2—1) (5.12)

A figura 5.2 traz a dindmica da nomenclatura dos pontos para os quais as
propriedades serdo calculadas. Note que em cada caracteristica, a despeito do
primeiro ponto comum a todas, cada uma possui a quantidade de pontos de
interesse igual ao niumero de caracteristicas mais um (n + 1). Também é de fécil
percepcao que, segundo a nomenclatura, todos os pontos sédo da forma (i,j) = (j, i),

fato este que foi utilizado para o cbmputo das propriedades.

y

(@.5) (+5)

(34)=(4.3)

(2.3F3.2)

(1) 2.2 (3.3) (44)

Figura 5.2 — Exemplo da geometria de um bocal divergente e de suas caracteristicas
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Ainda da figura 5.2 pode-se notar que os pontos da primeira caracteristica
dependem todos apenas do angulo que o vetor velocidade faz com o eixo das
abscissas do sistema de referéncia. Nota-se que a primeira linha na realidade é
aguela perpendicular a parede da garganta na qual o nimero de Mach é unitéario.
Utiliz-la como caracteristica ndo seria de grande ajuda tendo em vista que que sua
reflexdo com a linha de centro, suposta uma parede com vetores velocidades
paralelos ao escoamento, a levaria a0 mesmo ponto, € ndo a parede externa do
bocal. Desta forma, a primeira caracteristica a ser considerada possui vetor
velocidade com angulo 6;,;.;,; t40 pequeno quanto se queira, sendo cada outra
caracteristica a seguir com tal angulo calculado a partir deste mais uma variacao

dada por:

Hmax - einicial (5-13)

AG =
n—1

Desta forma, os primeiros pontos tem como valores dos angulos caracteristicos e

constantes de Riemman dados por:

01 = Oiniciar + G — 1)AB (5.14)
Vi,j = 04 (5.15)

k—l,j =0+ vy (5.16)
Koy, = 00)— Vi, (5.17)

Conforme ja descrito, tem-se que (i,j) = (j, i) para cada ponto de encontro
das linhas caracteristicas. Portanto, o primeiro ponto de cada uma das demais

caracteristicas, a exce¢ao do mais externo, € dado por:

Hj,l == 91']‘ (5.18)
lel == 1/1']- (5.19)
ko, =k (5.20)
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kojy =key, (5.21)

Os pontos que tocam a linha de centro tem indices da forma (i,i). Nota-se
que, conforme ja definido, a linha de centro sera tratada como uma parede com 0s
vetores velocidades paralelos a a ela, isto é, hd uma linha de corrente paralela a tal

eixo, desta forma

Hi,i = Blinha de centro = 0

Da analise da figura 5.1 tem-se também que tais pontos tem o mesmo invariante de
Riemann negativo que os pontos de indice (i,i — 1), o que possibilita facilmente o

calculo dos demais angulos e invariantes que restam:

K—i_i = K—i,i_l = Blinha de centro T Vii =
=0
= Vi,i = K_i,i—l (522)
Acarretando em:
Kyii=0ii — Vi (5.23)

Findados os calculos destes valores para estes primeiros pontos de
intersec¢c@o entre as caracteristicas, passa a ser necessario tais coOmputos para 0s
pontos internos. E facil notar que cada um destes pontos goza dos mesmos
invariante de Riemann positivo e negativos que os pontos (i,j—1) e (i,j — 2),
respectivamente. Entretanto ha uma dificuldade na implantacdo usando esta
notacdo de pontos tendo em vista que o ponto (3,2), por exemplo, ndo tem como
acessar o (3,0), devendo se valer dos pontos (3,1) e (2,2). Ou seja, pontos de indice
da forma (i,j) com i > j devem seguir condicdo diferente daqueles com j > i. Desta

forma uma condic&o adicional € necessaria para o computo dos valores associados
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a tais pontos. As equacbes a seguir listadas fornecem, junto com a condicdo o

método proposto para o célculo.

Se(i,j)comi>j

key =k, (5.24)

ki, = kapy (5.25)

~ (5.26)
0i = E(k‘iJ + k+u)

1 (5.27)

Se(i,jycomi<j

ke =keyi, (5.28)
ki =Koy (529)
1 (5.30)

9= E(k—i.j they)
(5.31)

Vij = %(k-i,j - k+i.j)

Por fim, os ultimos pontos, aqueles que também fardo parte da parede
externa do bocal gozam dos mesmos valores que 0s seus anteriores da mesma

caracteristica, desta forma:

k—i,n+1 = k—i,n (5-32)
k+i,n+1 = k"‘i,n (5-33)
1 (5.34)

9i,n+1 = E (k—i,n+1 + k+i,n+1)
(5.35)

Vint1 = E(k—i,n+1 - k+i,n+1)

Como agora se tem posse de todos os valores dos invariantes de Riemann,

angulos em relacéo ao eixo horizontal do sistema de coordenadas e dos angulos de
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Prandtl-Meyer, é trivial calcular o nimero de Mach e o angulo da linha caracteristica
em relacdo ao vetor velocidade. Sabe-se que v = f(M, k) de maneira implicita, desta
forma é possivel através do método de Newton-Raphson (Humes, 1984) determinar

0 numero de Mach dado o angulo de Prandtl-Meyer segundo:

~ (M) (5.36)

Linovo — bl anterior f'(Mgnt)

Com
(e — (537)
f(Mant) = leaT‘Ctg m Mi'jant - 1 - aTCtg( Mi'jant - 1) - vi'j(Mi'jant)
E
M, ; 5.38
f’(Mant) = Lant ( )

Mgt = 114 T (M~ )

E preciso notar que a cada iteracdo o nimero de Mach anterior é comparado
ao atual até o ponto em que eles sejam tdo proximos quanto se deseja segundo a
precisdo adotada. Até este instante, para cada iteracdo o valor de Mach anterior
passa a ser o valor do Mach atual da iteracdo anterior. Também é importante
ressaltar o valor inicial dos niumeros de Mach assumidos. No caso dos primeiros
pontos da malha, o nUmero de Mach esperado € proximo a unidade, desta forma o
primeiro teste é feito com este. Todos 0s demais pontos tem como primeiro nimero
de Mach aquele calculado para o ponto de interseccdo de indice (i,j —1). Nos
testes realizados sempre houve convergéncia para valores julgados consistentes

com os apresentados em Anderson (2003) e Hodge (1995) para casos analogos.

Finalmente o valor do angulo entre a caracteristica e o vetor velocidade de

cada linha de corrente existente pode ser calculado segundo:
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1 ) (5.39)

:ui,j = arcsen<
i,j

5.2.1.2. Determinacédo das coordenadas de cada ponto de interseccéo

Conforme exposto por Hodge (1995), o método das caracteristicas é de
sobremodo interessante por permitir a reconstrucéo das linhas de Mach a partir dos
pontos de encontro das linhas caracteristicas (linhas de Mach) e assim determinar o
perfil da secdo do bocal sem saber, a principio a localizacdo de nenhum ponto da
malha a excecdo daquele do qual as caracteristicas partem. Tal ponto é
caracterizado por ser aquele de juncao entre a por¢cao divergente e convergente do

bocal, sendo sua posicao definida segundo x;; = 0 € y1 1 = Dgarganta/2- Tal ponto &

o inicial de cada uma das demais linhas caracteristicas, desta forma:

xi,1 — O e yi,1 — Dgarganta

Os pontos de interseccdo com a linha de centro podem ser determinados a
partir da posi¢do de um unico ponto anterior e assumindo que y;; = 0. Note que
como se comecou de um ponto (1,1) para o qual ndo se havia calculado nenhum
dos parametros da secédo 5.2.1.1, cada ponto (i, j) tem os valores utilizados de (i,j —

1), o seu ponto real segundo a figura 5.2.

(Lj-1)

(1.2)

(a) (b)

Figura 5.3 — Pontos de intersec¢@o com a linha de centro



102

Para o caso (a) da figura 5.3, tem-se que o ponto (1,2) é aquele no qual a
caracteristica 1 intercepta a linha de centro e reflete, sendo este definido por:

y(1,2) = y(1,1) + by (x(l,Z) — x(l,l)) =

=0 Dgarganta =0
2
_Dgarganta
= |x(1,2) = —22rgante (5.40)
b1
Com
by = tg(611 — 11,1) (5.41)

Para os demais pontos de intersec¢cao com a linha central, tal como a figura 5.3.b:

y@. ) =y j =D +b(x(,j) —x(,j—-1) =
=0

i,j—1
= |x(i,)) = —% +x(i,j — 1) (5:42)
Com
1
bi=tg || Ouj-1 +0i; = Hij ~ Hij (5.43)
=9parede




(1.1)=(-1.1) (i,J-2)=(i-1.))

(1) (i.j)

i ]
(1,)-1) ;9 (ij-1) ;:JISJ-

(@) (b)

Figura 5.4 — Determinacao da posicéo dos pontos internos da malha interior ao bocal
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Os pontos internos da malha que estao na primeira linha caracteristica podem

ser calculados segundo:

Subtraindo as equacdes (5.45) de (5.44) e isolando x(1, j):

y(G =11 —y(1,j =D +bx(1,j—1) = byx(j — 1L1)
bz - b1

x(1,)) =

(5.44)
(5.45)

(5.46)

Tendo os coeficientes angulares definidos, segundo a convengao da figura 5.2:

1
b, =tg [E (Bi,j—l + 01,1 — Mijj—1 — Hi-1,j-1 )]

(5.47)



104

(5.48)

1
b, =tg [E (Hi,j—l + 02+ Uij1+ Ui )]

E y(1,)) definido por uma das equacgdes (5.44) ou (5.45)

Para os demais pontos da malha, a excecdo daqueles que encontram a
parede do bocal, o calculo é feito segundo a figura 5.4.b. A equacédo de cada uma

das retas que liga o ponto anterior ao ponto a ser determinado € dada por:

y(,j) =y =1j) + b (x(i,j) —x(i = 1,))) (5.49)
y(@.j) =y(,j =1 + by (x(Q,j) —x(,j — 1)) (5.50)

Subtraindo as equacdes (5.49) de (5.50) e isolando x(1, j):

_y—17) =y, j = 1) +bpx(i,j — 1) — byx(i — 1)) (5.51)

X(0)) —

Tendo os coeficientes angulares definidos, segundo a convencéao da figura 5.2

1 (5.52)
b, =tg [E (91,]'—1 +60;_11— Uij-1 — Kj-11 )]

1 (5.53)
b, =tg [E (91,j—1 + 91,j—2 + Uy j-1 T Hej—2 )]

E y(1,)) definido por uma das equacdes (5.49) ou (5.50).
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5.2.1.3. Determinacao dos pontos de interseccédo entre as linhas caracteristicas e a

parede do bocal

Por fim, a fim de possibilitar a delimitacdo da parede do bocal, é necessério
determinar os pontos nos quais as linhas caracteristicas interceptam este. Anderson
(2003) propbe que a reta que conecta dois destes tais pontos consecutivos tem
inclinacdo dada pela média aritmética entre cada um dos angulos do pontos notaveis
em questdo em relagcdo ao vetor velocidade assumindo que, como condi¢cdo de
contorno, estes vetores sejam tangentes a ela em cada ponto. Isto €, h4 uma linha
de corrente que tem o mesmo formato que a parede, 0 que é razoavel lembrando
gue o escoamento é potencial neste caso analisado, conforme ja discutido na secéo
2.2.

A figura 5.5 ilustra os dois casos a serem analisados no presente momento. A
figura (a) diz respeito a interseccdo entre a primeira caracteristica e a linha de
contorno da parede do bocal. Ja a figura (b) ilustra quaisquer outras linhas em

caracteristicas interceptando o contorno do bocal.

(a) (b)

Figura 5.5 — Determinacao das coordenadas dos pontos de intersec¢do entre a parede do bocal e as

linhas caracteristicas

A analise inicia-se pelo caso (a) da figura 5.5. Sejam as duas retas ligando os

pontos assinalados
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y(L,n+2)=y(1,1) + b;(x(1,n+ 2) — x(1,1)) (5.54)
y(L,n+2)=y@{i,n+1)+b,(x(1,n+2) —x(1,n+ 1)) (5.55)

Subtraindo as equacdes (5.54) de (5.55) e isolando x(1, j):

y(1,1) —y(1,n + 1) + byx(1,n + 1) — byx(1,1) (5.56)

x(IL,n+2)= -
2 1

Tendo os coeficientes angulares definidos, segundo a convencéao da figura 5.2:

(5.57)

1
b, =tg [E (gmax + 91,n+1 )]

(5.58)

1
b, =tg [E (91,n+1 + 010+ Uins1 T Uin )]

E y(1,n + 2) definido por uma das equacgdes (5.55) ou (5.54). Estes valores séo os

mesmos gue o segundo ponto da parede do bocal, dada por:

z,(1) = x(1,1) e z,(1) = y(1,1)

z,(2) =x(L,n+2)ez,(2) =y(1,n+2)

Com areta que os liga dada por:

zy(2) = 2, (1) + by (2, (2) — z,(1)) (5.59)

Com b, calculado.
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Generalizando para o caso (b) dos demais pontos de encontros das linhas

caracteristicas com o bocal:

yin+2)=y(i-1,n+2)+b,(x(in+2)—x({—1,n+2)) (5.60)
yi,n+2)=y(@i,n+1)+b,(x(i,n+2) —x(i,n+ 1)) (5.61)

Subtraindo as equacdes (5.60) de (5.61) e isolando x(1, j):

yi—-1,n+2)—y(@,n+1) +bx(i,n+1) —bx(i—1,n+2)| (5.62)
b, — b,

x(L,n+2) =

Tendo os coeficientes angulares definidos, segundo a convencgéo da figura 5.2

(5.63)

1
b, =tg [E (ei—l,n+1 + 0 n+1 )]

(5.64)

1
b, = tg [E (Hi,n+1 + ei,n + Uint1 + Hin )]

E y(i,n + 2) definido por uma das equacdes (5.60) ou (5.61). Estes valores sdo os

mesmos gue o segundo ponto da parede do bocal, dada por:

z(i+1) =x(in+2)ez,(i+1) =y(@,n+2)

Com a reta que os liga dada por:

z,(i+1) = 2z,()) + by (2, (( + 1) — z,(:)) (5.65)
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Com b, calculado.

Com todas as posicOes calculadas é possivel tracar toda a malha interior do
bocal bem como sua parede externa, 0 que garante a obtencdo da secdo de
descarga e comprimentos ideais para este bocal ter na se¢do de saida o niumero de

Mach desejado com menor gasto possivel de material e menor massa.

5.3. DESENVOLVIMENTO DA SOLUCAO TRANSIENTE PARA UM BOCAL
QUASE-UNIDIMENSIONAL

Com o escopo de fornecer um método para o calculo do esvaziamento da
camara de combustdo com a queima do combustivel e escoamento do gas
produzido durante a combustdo serd apresentado um modelo isentropico de bocal
guase-unidimensional com captura do regime transiente tal como apresentado em
Anderson (1995). A principal preocupacdo em representar adequadamente a
dindmica da camara de combustdo reside no fato de a pressédo interna ser de
fundamental importancia no dimensionamento das paredes do vaso no qual estara
contido o combustivel, como também na determinacdo do empuxo méximo. Vale
ressaltar, conforme verificado na secao 5.1, que a pressao no interior dessa varia de
acordo com o processo de degradacdo do combustivel, e este, por sua vez, esta
atrelado a esta dado que a taxa de queima () é diretamente proporcional a pressao

da camara.

5.3.1. Desenvolvimento das equacdes adimensionalizadas

Na secdo 4.4 foram obtidas as equacdes diferenciais gerais na forma nao-
conservativa, isto €, em termos de derivadas substanciais e convectivas, para o0 caso
de um bocal convergente-divergente supersénico em termos das propriedades

fisicas do escoamento, suposto isentropico e o gas modelado como ideal.
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d(pA) 0d(pAV) (4.66)
+ =0
ot Ox
av v 0dp (4.71)
Par TP 55 = Tox
oT oT av d(InA) (4.78)

— 4 pVey—=—p——pV
pc"6t+p C"ax pax p 0x

Seja T, a temperatura na camara de combustéo, p. a pressdo na camara de
combustéo e p. = p./RT. a densidade do gas no interior desta, L o comprimento do
bocal e ¢, = VKRT, a velocidade do fluido associada a cAmara de combustdo. A
partir destes € possivel introduzir os adimensionais para area da secédo transversal,

posicdo, temperatura e densidade do fluido ao longo do escoamento tal como feito
por Anderson (1995):

oot (5.66)
L/c.
A = yo (A* é a area da garganta) (567)
T
=l (5.68)
Te
,_ P (5.69)
p =
Pc
vV
pr=t (5.70)
Cc
,_X (5.71)
T

A facilidade introduzida pelos adimensionais esta no fato de generalizar as equacgdes
para quaisquer valores de comprimento e condicdes no interior da camara de
combustdo. De posse dos adimensionais substituindo-os nas equacdes que regem o
fendbmeno do escoamento (continuidade, quantidade de movimento e energia), tem-
se:

ap’ LoV’

a4y, dp’ (5.72)
o - P o PV o Vo
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oV _ v _1(ar T'3p (5.73)
ot ax’  k\ox'  p’ ox'
or’  aT oV a(inA)) (5.74)
- Ve A-RT <6x’+V ax’' )

5.3.2. Aplicacdo do método de diferencas finitas

Conforme exposto em Anderson (1995) a solugédo para o presente problema
pode ser obtida a partir do uso do método de MacCormack para a solucdo de
equacdes diferencias parciais de malhas fluidas. A rigor, este é provavelmente o
método mais simples e de mais facil implementacéo, entretanto leva a resultados

bastante fidedignos.

Sua esséncia baseia-se na ideia do uso de passos de estimacdo dos
parametros e corre¢cdo dos mesmos ou seja, €, naturalmente, um predictor-corrector.
Desta sua caracteristica, alternando entre os passos de estimacdo e correcdo
diferencas finitas progressivas e retrogradas, este captura o fenbmeno com erros de

22 ordem.

Segdo de Descarga

L
L
L
<
<
S5 e e e G S (R ARG

>4
=

Camara de combustdo

AN EOT NN e SIS Eai
[ ]
L 2
L
4
L

Figura 5.6 — Discretizacao linear do bocal convergente-divergente
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No caso em questéo, buscou-se estimar as variagdes no instante (t + At) a
partir dos valores calculados para o instante t, tendo em vista o0 carater quase-
unidimensional do fenbmeno em andlise. Para a estimativa dos valores da variacédo
temporal das propriedades enunciadas pelas equacgdes (5.72) a (5.74) no instante t
para o i-eésimo ndé da malha, utilizaram-se diferencas finitas progressivas em todos 0s
nés a excecdo do ultimo, tendo em vista que ndo ha elementos além deste,

necessitando, pois, valer-se de diferenca retrégrada. Para a etapa de estimacéo:

nt , , , , )t
0P\ _ _ Vi =V e @) — @D e — e (5.75)
ot i P i Ax' p it Ax' i —Ax’
VN _ eVl =V (T =T TP =P (5.76)
ot' /. YA k Ax' Pt Ax
a—T, t = _V’FM _ (1 _ k)T'F V,§+1 B VI? + V'F ln(A,f+1) - hl(A”D (577)
atl ; L Axl l Axl i Ax’

7

Com estas é possivel estimar o valor das propriedades adimensionalizadas no
instante t + At. Estas, assim como em Anderson (1995) seréo assinaladas com uma

barra horizontal acima da varavel:

ap"\* (5.78)
_[(t+At) It
pl pl + <atl>l t
_ v\ (5.79)
ot ;
_ aT"\* (5.80)
T’§t+At) — T’f + <_,> At
ot ;

Com estes valores estimados € possivel obter uma estimativa para a variagao
das propriedades com o tempo no instante (t + At). Agora, a fim de garantir a
obtencdo dos parametros com erros de 22 ordem serdo utlizadas diferencas

retrogradas a excesséo do né inicial que ndo possui qualquer outra opgcédo que nao
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seja diferenca progressivo. Este fato somado a unicidade de diferencas retrégradas
para o ultimo no fluido de fato acarretam em desvios numéricos em relagdo aos
valores esperados. Em termos de propriedades nestes dois pontos, afirma-se que
nao havera grande comprometimento tendo em vista que sao fronteiras da malha
fluida, locais este que serdo ajustados segundo as condicdes de contorno
adequadas. Os valores das taxas de variagdo temporais estimadas sado dados pelas
equacodes (5.81) a (5.82).

_yy\ (t+AL) (t+At) &, (t+AL) t+At t+At
6pr _ _(t+A) vV i -V i—1 _ _/(t+At)Vr§f+At) ln(A’E )) — ll’l(A’lg_'; )) N (581)
ot' ), Pi Ax' P : Ax'
—r(t+At) —(t+At)
_preran P ~Pi1
¢ Ax’
=\ (t+At) =, (t+At) =, (t+At)
al — _V,(t+At) Vi - Vi + (5'82)
at’ ; t Ax’
= (t+At) = (t+At) = (t+AL) —(t+At _(t+At)
LT R0 e pesn
k Ax’ p(E+a0 Ax'
L
TN _ e T T (5.83)
at’ ; B i Ax’
=, (t+At) =, (t+At) t+At A
— ) (Vi -V =/ (t+AD) In(A'{"4) — In(4"40
-1 -KT'; + V7
Ax' Ax'

Com estas derivadas temporais e de posse das equacbes (5.75) a (5.77),
toma-se a média das taxas de variacdo temporal das propriedades a fim de se obter
uma taxa de variacdo temporal média das propriedades, esta sim usada na correcao

do valor da propriedade no i-€simo ponto para o instante t + At.

ap') 19’ t+ ap"\"" (5.84)
(at’ B aot' ] " \ot

L l l
(av') 1 '<av'>t .\ <a17'>”“' (5.85)
at’) 2|\ ac at' |

| l l i
<6T’ _1ffary’, (or A (5.86)
at’)_z o). \at'),
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E assim, finalmente tem-se as propriedades adimensionalizadas no instante (t + At):

ap (5.87)
/(t+At) o

av’ 5.88
V/§t+At) — V’f + (_,) At ( )

Jt

aT’ 5.89
Tlgt-l-At) — T,f + (at,)At ( )

A condicdo de parada adotada para a confeccdo de um codigo para
simulacdo computacional foi o instante no qual a diferenca em modulo entre os
instantes atual e anterior de todas as propriedades em todos os pontos da malha

fosse tdo pequena quanto se queira.
Vit —vii| <6
i = p'[ <8
i = p'f[ <8

Ainda antes da implementacdo computacional do método para a solugcédo do
escoamento é necessario apresentar condicdes de contorno e iniciais a serem
impostas para que haja satisfacdo da condicdo fisica em analise. Iniciar-se-a as
discussbes pelas condi¢des iniciais. Anderson (1995) deixa bem claro que quaisquer
as condicdes impostas inicialmente havera convergéncia do programa, entretanto,
como se deseja chegar ao regime permanente, quanto melhor a estimativa das
condig¢des iniciais para este menor o recurso computacional e tempo para a solucéo.
Ainda ha questdo das grandes variagdes no transiente que podem acarretar em
erros numericos a serem propagados. A experiéncia obtida pelo autor do relatério na
simulacdo de seu caso em estudo mostra que, na verdade, a possibilidade de
estimativas erradas numéricas sdo grandes quando ndo ha reflexdo acerca das
condi¢cbes de contorno. Isto ficou claro em uma simulagcdo de outra geometria de
bocal com as mesmas condicbes de inicio impostas no caso apresentado por

Anderson (1995). Para este a densidade adimensional calculada ficou negativa
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induzindo na divergéncia da solucdo a partir de valores ndo adequados, ou melhor,

valores que nao estao na reta real, mas sim no plano complexo.

Uma metodologia adequada para estimagdo dos parametros consiste em
calculos simples obtidos a partir da teoria mais basica de escoamento compressivel.
Notou-se que € adequado aproximar as propriedades densidade e temperatura com
uma funcdo linear decrescente desde a face de admissdo até a de descarga,
calculando o valor nesta ultima a partir do numero de Mach de projeto:

Te
k—1
, (1 + 2 M_s?al’da)
Ting =1— T, x
E,
k—1
D (1 + TMszal’da
k_- RT,
k—1 k-1 ¢
, 1 (1 + 2 Mszaida)
DPini = —_ X
i Pc/RT:

Ja a velocidade adimensional pode ser estimada da mesma maneira, mas a partir da

velocidade na sec¢ao de descarga do bocal:

[

Msaida kR k—1
(1 + TMszaida)

v, . =1-— X
int kRTC

Anderson (1995) também traz uma abordagem muito interessante no que toca
as condicbes de contorno a partir da utilizacdo de conceitos do método das
caracteristicas, ja abordado na secdo 4.2. Conforme ja apresentado, as linhas
caracteristicas nada mais sao do que ondas de Mach de pequena magnitude que se
propagam com velocidade sénica local, deslocando-se sempre a montante e a
jusante do escoamento. Conforme ja visto ha sempre um par destas, uma que se

move a direita e outra a esquerda. A figura 5.7 ilustra a situacéo a ser analisada.
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entrada na saida
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Figura 5.7 — Entrada e saida do bocal

7

Como a velocidade da caracteristica € maior do que aquela local do
escoamento na secdo de admissao, isto porque nesta a velocidade é extremamente
baixa, tem-se que a caracteristica esquerda sai do dominio fluido em andlise
adentrando ao reservatorio, no caso, camara de combustdo. Ja a caracteristica que
segue a direita nesta secdo adentra ao dominio analisado. Algo diferente acontece
na secdo de descarga. Nesta, ambas as linhas carateristicas se deslocam com
velocidade menor do que aquela atingida na secao. Ora, isto € 6bvio de se notar ja
que o projeto do bocal é feito para que a velocidade do escoamento local seja maior
do que a velocidade sbnica no loco. Com isto, dada a composi¢cdo de movimentos
dos vetores velocidade, ambas as caracteristicas sdo “arrastadas” para fora do

dominio fluido.

Segundo Anderson (1995), da teoria do método das caracteristicas, se uma
das linhas sai da dominio fluido, tem-se que ha a necessidade de uma propriedade
do ponto em que esta parte ser flutuante. Isto ocorre com ambas as linhas na secéo
de descarga, acarretando na necessidade de deixar todas as propriedades nesta
variarem. Isto pode ser feito a partir da utilizagdo de parametros obtidos em pontos
adjacentes ou préximos no escoamento. Também nota-se que na sec¢do de

admissdao somente uma das caracteristicas deixa o dominio fluido, desta forma
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somente uma propriedade, no caso adotado a velocidade adimensional, ird variar,

sendo a densidade e temperaturas, por facilidade, definidas.

A variacdo das propriedades pode ser feita de maneira linear levando em
conta 0s nés mais proximos subsequentes (secdo de admissdo) ou anteriores
(secdo de descarga). Para o caso da velocidade, por exemplo, estipula-se, por
hipotese que havera aumento linear desta entre os nés (i-2), (i-1) e i. Como néo se
sabe ao certo o valor da velocidade em i, mas sim os de (i-2) e (i-1) bem como a
distancia entre estes, uma estimativa do coeficiente angular da reta pode ser obtida:
V’f—l B Vlf—z

a =
Ax'

Da hipotese de que o ponto i estd sobre a mesma reta, tem-se que, para uma
distancia Ax" entre os pontos (i-1) e (i):

rt It
v i-1 4 i—-2

t
Vi’ = V’f—l + Axl

Ax' = |V'i=2v"t -V,

O mesmo vale para as demais propriedades na secdo de descarga.

Analogamente, para a velocidade na secao de entrada:

vi=2vt-v't

A tabela 5.1 lista todas as condi¢cGes de contornos utilizadas na confeccéo do

programa de simulagédo computacional.

Tabela 5.1 — Condi¢8es de contorno para analise quase-unidimensional de um bocal convergente-

divergente supersénico

Secéo Propriedade Condicao de contorno
T’ 1
Entrada 14 V’i =2Vt — V't
o' 1
T T’f =27, - T,
Saida v vt = 20—Vt

p P’: =2p"l1 P12
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Na entrada, a temperatura e densidade adimensionais tem como condi¢éo d
contorno 1 pois sdo adimensionalizadas segundo os parametros da camara de
combustéo, isto é, a temperatura € idéntica a temperatura da camara bem como a

pressao.

Resta para finalizar a apresentacdo da metodologia para a avaliacdo de um
bocal quase-unidimensional supersonico verificar quando devem ser impostas as
condi¢des de contorno. Apoés testes realizados no cddigo apresentado no apéndice
A, verificou-se que, além de impor tais condi¢cdes para a situacdo inicial, também é
necessario impoé-las a cada um dos passos de temperatura, tanto para as
propriedades adimensionalizadas falsas, como também para as verdadeiras obtidas
ao final. Caso nado aplicadas na etapa de estimacdo das propriedades “falsas”,
verificaram-se discrepancias numéricas acentuadas na comparacdo do caso

resolvido por Anderson (1995).

O ultimo ponto a ser citado € a escolha do intervalo de tempo de cada
iteracdo. Anderson (1995), atesta que, por questdes de estabilidade para o caso em

questéao, o valor do passo temporal deve obedecer:

, Ax' ¢ Ax' ¢ Ax' (5.90)
At =C—— =2 At =C——— = At/ = C———
c+V kRT ., VT + V'
kRT,

Devendo ser escolhido o menor dentre todos os calculados para cada ponto. O valor
C apresentado se trata do numero de Courant tendo seu valor no dominiol e R/ [ =
10,1]. Fisicamente, a escolha do menor At; significa tomar o menor tempo no qual
uma onda de perturbacdo pode avancar de de um ponto para o outro do
escoamento, dai a necessidade de se tomar o menor valor a fim de capturar todo o

fendbmeno no dominio em andlise.



118

5.4. APLICACAO DA SOLUCAO DO BOCAL QUASE-UNIDIMENSIONAL AO

PROBLEMA DE ESVAZIAMENTO DA CAMARA DE COMBUSTAO

Para esta determinacdo, novamente sera utilizada a equacao diferencial ja

deduzida na secdo 5.1, que calcula variacdo temporal da pressdo no interior da

camara de combustdo a partir do volume livre desta (varidvel com a queima do

combustivel), temperatura interna, propriedades do gas resultante do processo e

namero de Mach na garganta, para o caso blocado desejado a fim de maximizar a

vazao massica, M, = 1.

dp,

dt

RT,

Vlivre

aAqueima (pwmb - >pcn —p M4,

k

RT.

1+——M

(5.91)

Considerando um propelente solido de geometria cilindrica o qual queima

com area constante igual a sua secédo transversal ao longo de seu comprimento, e

denotando seu comprimento por L. e diametro D,, tem-se seu valor inicial dado por:

D
V=0 =m

(5.92)

Como sua queima depende da pressédo da camara de combustdo, no instante t + At

genérico tem-sem que o volume de combustivel é:

+)

V,(t + At) = V,(£) —

(5.93)

Assim, o volume livre da camara € dado pelo volume morto (volume inicial no qual

nao ha combustivel sélido) somado ao total de volume de combustivel queimado:
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Vlivre(t) = Viipre (0) + VL](t) (5-94)

5.4.1. Implementagdo computacional

A fim de introduzir esta dinamica a simulacédo do bocal quase-unidimensional,

nota-se que a pressdo no interior da camara de combustdo j& ndo mais sera

constante, desta forma, a cada passo de tempo ela serd alterada. O equivalente a

isto é dizer que a pressdo na secao de admissdo do bocal serd alterada a cada

passo de tempo segundo a equacdo diferencial que rege o fenbmeno. O

procedimento para este calculo é descrito em sequéncia.

1.

2.

3.

Obtencédo dos parametros fisicos T,p para o calculo da pressdo da camara

com dimensao fisica;

T, =T; (Tc) (5.95)
pe = pi (pc) (5.96)
pg = p.RT, (5.97)

Para uma variagdo At de tempo, calcular o novo volume da camara de

} (5.98)
At

combustao

2
Vlivre (t + At) = Vlivre(o) + {Vq (t) - [(ap? <T[ %)

T

Verificar se o bocal estd ou ndo blocado a partir da comparacdo entre a
pressao da camara de combustdo e do receptor:

—k 5.99)
¢ k — 1\k—1 (
pgargtanta > (1 + )

D¢ 2

Com a verificacdo se o bocal esta ou ndo blocado, aplicar adequadamente a
equacao que diz respeito a taxa de variacdo da pressdo na camara de
combustdo com o tempo. Esta também possui duas possibilidades: uma no

caso em gue ainda ha combustivel sélido no interior da camara, e outra na
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qual ndo. Na ultima situacdo ndo ha geracdo de gases oriundos do processo
de combustdo, havendo somente o esvaziamento do componente até que a

pressdo interna se iguale a externa.

a) caso COM combustivel no interior da camara

I[ m]l (5.100)
k_
dp. _ RT. | o L 1 !
ac o a queima(pcomb pgés)pc PcMzA; R—TC m ‘
2
| |
b) caso SEM combustivel no interior da camara
1] (5:101)
d RT, k 1 o
pC _ C _ n __ A
dt Viiore aAqueima (pgés) Pc p MzA; RT, s k—1 M22
2
5. A nova pressao na camara de combustéo € dada por:
(5.102)

dt

d
pEFat = pt + ( pc)tAt

5.4.2. Determinacéo do perfil

A fim de aplicar o modelo quase-unidimensional para o fim proposto, se faz
necesséario determinar o perfil do bocal desejado a fim de gerar a funcdo que
descreve a area do mesmo. Com este escopo selecionou-se um niumero de Mach na
saida (2,5) e um raio de garganta (0,02 m) a fim de gerar a geometria externa da

secao divergente. O resultado para 50 caracteristicas esté ilustrado na figura 5.8.



121

Projeto de Bocal Minimo Supersonico
0.08 T T

Diametro (u.c.)

)‘\\\\\\\

X:0.2279
Y: -0.06672

008 L 1 1 ! |
0 005 0.1 015 02 025

Comprimento (u.c.)

Figura 5.8 — Geometria do bocal divergente calculada

A partir dos pontos gerados pelo método das caracteristicas fez-se 3
interpolagées de polindmios de diferentes graus tais como apresentadas pelas
figuras 5.9 a 5.11 a fim de verificar qual possui maior aderéncia. Este sera utilizado
como funcéo para determinacdo da variacdo de area no algoritmo para o cémputo

da variacdo da pressdo na camara de combustéo.

Aderéncia do polinémio de 2° grau aos dados obtidos teoricamente
007 T T T

0.06 —

0.055 —

0.05+—

0.045

Raio (m)

0.04

0.035

0.03

*  Caracteristicas
0.025 - Polinémio de 2° Grau |

1 | |
0 0.05 0.1 0.15 02 025
Comprimento (m)

0.02

Figura 5.9 — Interpolacdo de polinbmio de 2° grau
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0.07

Aderéncia do polinémio de 3° grau aos dados obtidos teoricamente

0.05

|
0.1

Comprimento (m)

015

T

02

Figura 5.10 — Interpolagéo de polinémio de 3° grau

Aderéncia do polindmio de 4° grau aos dados obtidos teoricamente

*  Caracteristicas
Polindmio de 3° Grau

025

T

T

|

T

*  Caracteristicas
Polinémio de 4° Grau

1
0.05

0.1

Comprimento (m)

0.15

02

Figura 5.11 — Interpola¢&o de polinémio de 4° grau

025
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Fica claro da analise dos gréaficos que os polindémios de 3° e 4° grau seguem

de maneira mais fiel o perfil gerado. A maior diferenca entre ambos esta na por¢cao

da garganta, na qual o polindbmio de maior grau apresenta cota mais proxima

daquela especificada (0,0191 m). Do exposto selecionou-se esta funcdo para

determinacao do raio do bocal, sendo os coeficientes dados por:
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r(x) = 1,2487(x — xo) * + 1,7049(x — x)® — 1,8288(x — x,)% + 0,5526(x — x,) + 0,0192  (5.104)

O perfil convergente, apenas para verificacdo sera aproximado por uma
funcdo exponencial decrescente de forma que a garganta figue na posi¢cédo de 3 cm
ao longo do eixo longitudinal. O perfil proposto esta ilustrado na figura 5.12. Nota-se
que o perfil interno ndo é aerodindmico, o que possui implicacdes no escoamento
induzindo regibes com queda de pressdo a jusante. Isto serd negligenciado no
presente  momento dada a avaliacdo isentrépica adotada, sem levar em
consideracao perdas de qualquer natureza. Naturalmente na situacao este deve ser

corrigido.

Perfil aproximado do bocal (Sem preocupagdo com o raio de curvatura de unio)
T

008 :

)

Altura (m

-0.02}

-0.04}

0 005 01 015 02 025
Comprimeto (m)

Figura 5.12 — Perfil proposto para avaliacdo do problema de esvaziamento da cAmara de combustdo

5.5. MODELO DINAMICO

5.5.1. Obtencéo do modelo dindmico n&o-linear

Para obtencéo do modelo dinamico de um missil, utilizou-se mecéanica vetorial

através do Teorema do Movimento do Baricentro (TMB) e do Teorema do Momento
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Angular (TMA), de modo similar aqueles apresentados por Jenkins (1984) e Ozkan
(2005).

Zﬁext = mdcg (5105)
. dH (5.106)
ext — E

Figura 5.13 — Modelo fisico do missil

A figura 5.13 ilustra 0 modelo fisico do corpo em movimento bem como 0s sistemas
de coordenadas selecionados para a obtencdo da equacbes de movimento. O
sistema inercial foi escolhido como algum ponto localizado na superficie do globo
terrestre supondo este fixo em relagcdo ao espaco, isto é, desprezou-se qualquer
efeito da rotagcdo da Terra, justificando-se esta escolha dado a distancia a qual se
propde que o missil se desloque na missdao. Naturalmente que se 0 mesmo se
tratasse de um missil balistico de longo alcance, este efeito da rotacdo do globo

terrestre seria importante, ndo podendo ser negligenciado.
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Nota-se, ainda da figura 5.13 a escolha por alocar um sistema de referéncia
solidario ao corpo com o eixo 0'x, na direcdo do nariz do missil passando pelo seu
centro de massa e os demais também passando por este ponto e perpendiculares
ao 0'x. convencionando uma base ortonormal positiva. A fim de representar este
sistema de coordenadas solidario ao corpo em relacdo ao sistema de coordenadas
inercial foram utilizados os angulos de Euler (Etkin, 1972) com sequéncia exata de

rotacdes dada por:

e Rotacao de ) ao redor do eixo Oz (arfagem);
e Rotacao de 8 ao redor do eixo 0y’ (guinada);

e Rotacao de ¢ ao redor do eixo Ox" (rolagem).

A figura 5.14 ilustra a sequéncia de rotacdes proposta. Destas, pode-se escrever

as matrizes de transformacéo de base para cada uma das rotacdes.

Figura 5.14 — Convencéo para as rotacdes do sistema fixo ao corpo em relagéo ao inercial

segundo os angulos de Euler

cosy —senyp O (5.107)
{x} = [semj} cosy 0] {x'}
0 0 1
[T]o-1
cos@ 0 —senf (5.108)
{x} =[ 0 1 0 ]{%"}
senf 0 cosf
[T]1-2
1 (5.109)

{x"} = [O cos¢ —sendb] {x.}
0 sen¢gp coso
[T]2—>C
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Todas as matrizes de transformacgédo de base ([T]y-1, [T]ioz € [T]2-c) S@o0

ortogonais, isto é:
At =41
Desta forma as transformacdes inversas sao dadas por:

[ cosyp seny O
{X'} =|—seny cosy 0] {x}
L 0 0 1

[T]1-0

[ cos@ 0 send] (5.111)
{(x"} = 0 1 0 [{x"}

|—senf 0 cosO]
[T]2-1

1 0 0 (5.112)
{x.} = [0 cosp  seng|{X"}
0 —sen¢ cosgl
[Tle—2

(5.110)

Com estas equacdes é possivel escrever a velocidade angular do centro de
massa do missil em relagdo ao ponto O do sistema de referéncia inercial no sistema
de coordenadas solidario ao missil. Seja a velocidade angular em relacdo ao

referencial inercial:

Bejo = Wk + 65 + 1" (5.113)

Mas, das matrizes de transformacdo de base, reescrevendo todos os versores de

(5.113) em relacdo ao sistema de coordenadas solidario ao corpo:

- s
=1,

7 = 17 = cos}], — senk,
k=K = senf1, + cosO(sendj, + cospk,)

Logo:
o (5.114)
@c/0 = [ +psend Ocosp +Pcossend PcosOcosd — Bcospl] Je

—

Cc



127

Portanto, segundo a notacdo usual em dinamica de aeronaves (Etkin, 1972), as
componentes da velocidade angular podem ser escritas segundo:

p = ¢ +send (5.115)
q = Ocos¢ + YPcoshseng (5.116)
r = Ycosfcosp — Bcosd (5.117)

Resolvendo o sistema linear formado pelas equagbes (5.115) a (5.117)
obtém-se as componentes de variacdo temporal dos angulos de Euler em funcéo

das velocidades angulares do corpo:

. gsen¢ +rcosf (5.118)

v = cos6

6 = qcos¢ — rseng (5.119)
¢ =p — (gsen¢ + rcosp)tgh (5.120)

Vale ressaltar que hd uma limitacdo de guinada dado que, d4 equacédo (5.118), 6

deve ser diferente de 90° caso contrario o que se tem € uma indeterminacao.

De posse das velocidades angulares escritas segundo o sistema de
coordenadas do corpo, fica facil determinar o momento angular no missil. A escolha
deste sistema de coordenadas traz consigo uma facilidade impar no tratamento
deste termo: a matriz de inércia € constante a qualquer instante de tempo isto
porque a referéncia de célculo para esta é sempre a mesma, independendo da
posicdo do corpo tal como seria caso a avaliagdo da quantidade de movimento
angular fosse realizada no referencial fixo na Terra. A equacédo da quantidade de

movimento angular é dada por:

ﬁ =m(P — O)XT})O + {l_g Tg k—c)} ]yx ]y ]yz q

]x ]xy ]xz p} (5.121)
Jox Jzy T2 |7
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Como o corpo esta sendo avaliado no seu centro de massa, (P — 0) =0, desta

forma:
Jx Jay Jxz| op (5.122)
H= l_c) ]_C) kc} ]yx ]y ]yZ {q}
jzx jzy ]z r
Derivando (5.122) em relagcédo ao tempo:
p
. . d
dH d{l_c) J_C, kc} ]x ]xy ]xz 1% o ]x ]xy ]xz {z} (5.123)
E= T ]yx ]y ]yz q +{lc Jc kc} ]yx ]y ]yz dt
Jox Jzy Tz | VT Jex Jzy Iz
Mas:
di, o L —
d_tc =P, q,r)x1; = 1) — qk,
Ue _ (p, q,r)x57 = phe — iz
dt M c c c
dk, -
d_tc = (pr QrT)Xkc =(qlc —DPJc

Entdo, ja reorganizando as equacfes segundo cada um dos versores e assumindo o
missil como um corpo de revolugdo simétrico segundo os planos 0'x.y. e 0'x.z,
com as superficies de controle nestes planos, todos os produtos de inércia se
tornam zero, restando somente os termos referentes aos momentos de inércia,

obtém-se as equacdes referentes a variacdo da quantidade de movimento angular.

it T (5.124)
E = pr + C[T'(]Z _]y) ]yq + pr([x _]z) ]zr + pq(]y _]x)] E
ke

Os momentos atuantes no missil possuem basicamente trés origens, uma

relacionada as forcas aerodinamicas devido a imersdo do corpo em movimento no
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meio fluido (atmosfera) e o momento relacionado ao empuxo, eventualmente
utilizado para fazer o controle vetorial através do movimento do conjunto de
exaustao dos gases, além de um vetor de perturbacéo. Desta forma:

Tc’} (5.125)

Maer + Mprop + Mpert = pr + qr(]z _]y) ]yq + PTUx _]z) ]zr + pCI(]y _]x)] {E
ke

Resta, agora, a avaliacdo do Teorema do Movimento do Baricentro para
obtencdo das componentes de aceleragcédo do corpo. A Aceleracdo do corpo € dada,

em termos absolutos, por:

i = d. + BC)0xT; (5.126)

Mas, a é a propria aceleracdo do corpo no sistema de referéncia inercial, sendo,

portanto igual a:

ZFext
m

-
a =

E o produto vetorial entre a velocidade angular e a velocidade do corpo, avaliadas

no referencial fixo no corpo, € dado por:

. ETLE k&
Beoxte=|p q r =[qw—71v TU—pW PV —qu] J,
u v ow k—c)

Assim, as aceleracdes tomadas no referencias do corpo séo:

E,
(> _ (qw — rv)\
ay F",l
a = < _y —_ —_ >
{az} ~ — (ru—pw) (5.127)
E,
kE - (pv - qu)J

As forcas externas que agem no corpo podem ser divididas em quatro vetores

distintos: aerodinamicas, propulsdo, de campo e de perturbacdo (por exemplo uma
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rajada). Todas estas, a excecdo daquela relacionada a algum campo, no caso o
campo gravitacional, sdo mais facilmente expressas no sistema de coordenadas do
corpo, uma das razdes pela qual o modelo € avaliado neste sistema de referéncia.
Desta forma, é necessario fazer a transformacéo de base com o escopo de avaliar a
forca peso no referencial solidario ao corpo. Seja a aceleragdo da gravidade
orientada na dire¢éo z do sistema de coordenadas inercial em seu sentido negativo,

assim:

P = —mgk (5.128)

Para esta mudanca, deve-se escrever a equacao (5.128) em termos dos versores do

sistema de referéncia solidario ao corpo, de tal sorte que se tem:

{x} = [To-1[T]1-2[Tlooc X3 (5.129)
[T]
Com
cosycosf senycosb senf
[T] = | —senycosp — senbBsen¢cosy  cospcosp — sen¢psenpsend  cosbseng
senmipseng — cospsenbcosy  —sengcosyp — senipsenfcos¢p cosOcosp
Logo:
i
PC = —mg[senf cosOsen¢ cosOcosp] Z (5.130)
ke

Em suma, as equacbes para a aceleracdo obtidas a partir da 22 Lei de

Newton sao dadas por:

(Facerx + Fprop; + ch + pcertx ( )\
—qw —1v
a m !
X Fior, + Fprop. + P + Flere
{ay} = 9Ty PTOPy Y kerly (ru—pw) { (5.131)
a, m
Facerz + Fprop; + ch + pcertz
= (pv —qu) |

\ m
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Agora se faz necessario, finalmente, avaliar os momentos e as forcas
atuantes no missil exceto pela forca peso que ja fora abordada. Como o escopo do
modelo dinamico é fornecer meios para o projeto de um sistema de controle para o
missil e este, segundo Ozkan (2005) sé se inicia apds a fase de boost, tais forcas
nao estdo atuando no modelo a ser descrito e também a massa do objeto é
constante, facilitando o projeto do controlador. Assim, a simplificagdo é dada por:

MSrop = ONm e ESpp = 0N

As forcas aerodindmicas s&o dadas conforme usualmente demonstrado em
livros sobre o assunto, tal como Anderson (1991), ou seja, variando com o quadrado
da distancia da velocidade do escoamento ao longe, no caso a prépria velocidade do
missil, seno proporcional a um coeficiente, seja ele de arrasto ou sustentacdo. Para
0 problema proposto as forgcas aerodinamicas serdo tomadas uma em cada direcao
do sistema de referéncia solidario ao corpo, sendo elas dadas por:

1 5.132
Facerx = ECxpar (u? +v* +w?) Scorpo ( )
v¢

1 5.133

Facery = Ecypar(uz + v+ Wz)Scorpo ( )

1 5.134

Facerz = ECzpar(uz +v? + WZ)Scorpo ( )

Analogamente para 0s momentos aerodinamicos:

5.135
L= EClpar(uz +v%+ Wz)ScorpoDcorpo (rolagem) ( )
1 5.136
M = ECmpm(u2 + 1% + W?)ScorpoDeorpo (Guinada) ( )
(5.137)

1
N = ECnpar(uz +v?+ WZ)ScorpoDcorpo (Arfagem)
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Com os coeficientes linearizados segundo Vuran (2003), dados por:

o-c. (5.138)
D, (5.139)

Cy = CyuB + Cys6r + Gy, Zmr
) D, (5.140)

¢, = Czaa + CZSSe + Czq qu
) D (5.141)

G = C36q + Clp Zmp
D 5.142

Cm = Cno@ + Cmgbe + Gy qu ( |
D, (5.143)

Cn = Cagh + Cungr + oy St

Os coeficientes C; sdo todos obtidos a partir do software Missile Datcom das
forcas aéreas americanas. Tal consiste num codigo em FORTRAN que quando
compilado fornece um executavel que 1€ um arquivo de entrada no formato .dat com
informacdes tais como a geometria do missil, numero de se¢bes com superficies
aerodinamicas, angulo de ataque (a =w/u), angulo de glissagem (8 = v/u),

numero de Mach.

Os valores de § indicam as deflexdes equivalentes a dos ailerons (é,), leme
(6,) e estabilizadores (6,). Supondo o modelo de superficies de controle para o
missil tal como assinalado pela figura 5.15, é possivel relacionar cada uma destas
deflexdes em fungcédo das deflexbes de cada uma das superficies de controle do

missil, cada qual a 90° da outra.
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Figura 5.15 — Deflexes das superficies de controle

64+6
ba=—5—
0, — 0
632 22 4
61_63
Or ==

Finalmente, de posse destas relacdes lineares para os coeficientes aerodinamicos e
as simplificacbes propostas € possivel, a partir das equacbes (5.118), (5.125) e
(5.131) isolar as aceleracdes lineares e angulares de tal sorte que se obtém um
sistema ndo-linear de 9 equacdes (i, v,w,p,q,7,¢,9,0) e 9 incognitas
(u,v,w,p,q,7, 9,3, 0). As equacdes estao listadas de (5.144) a (5.152).

. 1 ) W + 02 + wlnDZ, C. — gsend — qw + v (5.144)
= o Par m 4 X0
] 1 u?+v?+w?nD? ' (5.145)
V== Par - (Cyﬁﬂ+Cy66r+Cyrmr>—gcos@sen¢+pw—ru
] 1 u?+v*+w?nD (5.146)
W=~ Par - 2 (Czaa + Cy50. + CquQ) — gcosbcos¢p + qu — pv
81+ 83 Uy —J2) (5.147)

qr

1(1 Dy b
S 2 2 2 m =
1% {Zpar(u tvi+wh)— [C’S( 2 >+Cl”2 u2+v2+W2p]}+ Jx

Jx
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q—]—y{zpar(u2+v2+w2) 7 [Cma; Cm,;( > >+Cqu u2+v2+w } pr
T‘—E{Epm,(u2+‘l]2+wz) 7 [CnBE'FCnS( 2 )+CnT2 —u2+v2+w ]}
_ gseng +rcos6 (5.150)
B cos6
0 = qcosp — rseng (5.151)
¢ = p — (qsen¢ + rcosp)tgh (5.152)

5.5.2. Linearizacdo das equacbes de movimento

A fim de formar um sistema de equacgOes lineares aproximadas a partir das
equacdes (5.144) a (5.152), para cada uma destas sera feita a expansdo dos termos
em série de Taylor ao redor do ponto de equilibrio, obtendo-se assim relacfes com
erro de segunda ordem para cada uma das equacfes descritas. A forma final do

sistema de equacdes sera dada, em espacos de estado por:

('l:l.\ (u + Up
1% v+ v,
¥ Wt w 1 + 6,
p P+ Po ° (5.153)
i 8, + 67,
14 »=1[A]< 9t qo ; +[B] St 5
r r+71 3 30
) P+ \0s + 6,
0 0+ 6,
\¢/ \¢p + o/
Linearizando a equacéao (5.144):
U U Ju
uEu0+— (v_vo)‘l'_ (9 90)
au av 0 aW (5154)
ou
__ 2)

Com:
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2
—| = ——=—wvonD
m m

2
—| =—=—=—w,nD
m > oTTm

A equacéo (5.145)

+a
V= v, T
(r—1) (5.155)
0
+6v (6,—6,,) + v|(5 85,) + O(Av?
35,1, 1 19 95,1, 3 30 (Av?)
Com:
ov p vy, C D D2
0 0 (u0+v0+w)2
1p Cr D D2
+Eﬂ( 0+170 +W0) u_(z) ; m 7”0 4m—T'0

(u0 + vo + WO)Z
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v p v, C D D2
0 0 (U3 + vé + wg)z
1p D, v 1 [mD2
+§ﬂ(u0+v0+wo) 2 m0 3 T0 — yﬁu_Tm
(u + v¢ +W0)2 0
v Vo D D2
6_ =_p£W0 Cyﬁ y6 (610 630 2 UL TO 4771
to m (u + v¢ +W0)2
Dp,w, D2
+§pﬂ( 0+v0+W0) 2 - 370 4m+P0
(u3 + vé +w0)2
v
apl, — o
v
arl, to
av
= gsenb,seng,
av
—| = —gcosBycosp,
o 1 pgr Cy, D2,
35,0, = T2 m WMot w5
0V 1 pgr yanD2
35|, "7 m (0o W) 5
A equacéo (5.146)
ow
W= W0+— (v—v0)+—
du 0

(5.156)

W
¢ aq

520)+a5| (64 — 84,) + O(Aw?)
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Com:
ow wg C C D D2
Fuly = |Gy 5 (B 80) # 0|
0 0 (ud +vé +wg)z
1 wo C Du D2
+§pﬂ(u§+v§+w§) Cza—§+% o |~ o
m to (U3 + vé +wg)z
ow w, C C D D2
M =—pﬂvo Cza_o+%(520_640)+% - T do 4m
Vlo m Yo (ug + vé +wg)z
1p C, D, vy D2
+§%(u§+v§+wg) —1 = 3 90 4m—po
(ua + v + wg)z
ow wy C C D D2
EM :—pﬂwo Cza_0+$(620_640)+% - T 90 4m
tlo m to (ud + vg +wg)2
1 C D,w 1 |nD?
+—pﬂ(u2+v2+wz)ﬁ o Go — Cop — | ——
2m -0 0 T2 3 “ug| 4
(ud + vg + w)z 0
aw
- =_v0
apl,
ow
- =u0
aql,
ov _
a6l, = gsenfycos,
o _
o9l = gcosByseng,
v 1par 2 2 2 CZSHDTZH
36,| = Tz Tt W)y
v 1par 2 2 2 CZST[DTZTL
36,1 =27 (ot Vot Wo) Ry

A equacéo (5.147)
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4 op op ap
P=P0+%‘O (u uo)"‘% v vo)'*‘% ap O(P Do)
)+ _| r —70) L9 (51 51,) (5.157)

(53 530) + O(APZ)

663

Com:
@ 1 {p " T[Dr3n [Cl <610 + 630> " % Dm - }
duly L7704 [7° 2 2 JuZ +v¢ +wk
1 D3 C D uy
x (U2 + vz + wg)z
P -2 {p vy 2 lcl <61° ! 63") flo_ Dm }
vl LT 4 [0 2 2 JuZ + v +we
1|1 D3, Ci D,,v
T zpar(uo +v§ +wg) 4m_p - 3Do
x (ug + vé + wg)z
P _2 {p o T lCl <61° ! 63") yo D }
I i 2 2 Jug + v +we
1|1 D3, Gy D,,w,
] Par(uo +v§ +w§) 4m — = 3 Po
x (ug + vé + wg)z
ap 1(1 D3 [Cu, Dy,
anl, 1.2 { par 1ty + 5 +Wa) == |5 ug + v§ +wg
ap ]y _]z
aql,  Jx
ap ]y _]z
e do
or 0 ]x
ap 1 5 P T[Dr?;l C16
6_61 =T {par (ug +vg +wg z 2
ap 1 nDy, G
0_53 . ]x {par (uO + 170 + WO) 25}
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A equacéo (5.148)

=i+ aq dq
q 9q 5.158
+£ 50( =)+ 55| (8= 620) (>158)
064 (54 540) +0(Aq?)
Com:
aq 1 D3, Wo 8y — 84 Cin D,
— Cm,—+C 0+
auly ~ Jy {paruo 4 l " g m5< 2 2 JuZ+vZ+wd o
111 wo Cm D uq
A Zpar(uo +v§ +Wo) ?"‘ zq = 340
Y 0 (uZ + v& + wg)z
1 D3, Wy 8y, — 6, Cm D
_1 C _Y C 0 0 q m
avly {parvo 4 l ey m5< 2 2 ug +vg +wy o
11 D3 |Cm Dy, vy
_]_ Epar(u(z)-l'vg-l'wg) 4m zq = 30
y (U3 + v +wg)z
aq 1 D3, Wo 8, — 84 Cim D,,
— Cm,—+C o)+ 4
owly ~ Jy {parwo 4 l " ug m‘*( 2 2 JZtgrwg
111 D3 1 Cn D,,w,
+]— Epar(ug-l'vo +w§) —— ma T Zq = 30
y 0 (ug + vé +wg)z
“4 :]z _]xr
apl, Sy
1(1 D3 [Cm D,,
—| = (ug + v§ +w§) [ 1 }
dql, ]y{ Paritio ™ Fo o 2 JuZ +vZ+wg
@ =]z _]x
arly Iy Po
04 _1 D3 Cng
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6_54 . - ]y {par (uo + UO 2
A equacéo (5.149)
ar ar T
FETY,+— (u u0)+— w—vy)+—| W—wy) +
Vlg owly
or ar 5159
+— 1) +=—| (6,-6 (5.159)
ar )
+ 350 (83— 83,) + O(Ar?)
3%
Com:
or 1 D3, Vo 8, — 83 C, D
- C,.—+C, [|—=—= r m
au ]z {paruo 4 I ng U + ng < 2 + 2 (—u(z) n v§ n Wg To
111 vy G, D ug
A zpar(uo+vo +W0) BF"‘ ; = 370
’ 0 (u2 +vZ +w@)?
ar 1 D3, Vo 61, — 03 Cn D
R C — C _0 -0 T m
avly I, {parvo 4 [ " ug " Ens < 2 "2 ué + v+ we o
11 nD; 1 Gy, Dy v
+]_ Epar(u(%'i'vg-l'wg Tm Cnﬁu__ ; = 370
y 0 (ug + v +wg)?
or 1 D3, Wy 81, — 63 n D
—_ C - C o0 -0 T m
awly T, {parWO 4 I " ug " Ens < 2 ¥ Jué + v +wé o
111 nD3 |C . D,,w
T Epar(u(z) +v§ +wg) 4m ; L
z (u3 + vé + WO)Z
or ]x _]y
= =7 4
dpl, Jz
or ]x _]y
-0 = Po
apl, Jz
or 1(1 Ch, D,
arl, ]Z{ Par(ug +v§ + Wo) 2 Z 1 oZ 1 ng}




or 1 D3 C
- 2y _m “ns
661 ]Z {par(uo + vO + 0) 4 2 }
or 1 D3 C
a—(%o_—]—z{/oar(ug‘FUo +wo)— ;5}

A equacéo (5.150)

A1) 3
IPEIPO‘F%O(‘I_%)*‘EO(T'—TO)'*‘ ‘ G 00)+0¢
+0(8y?)
Com:
6_1/) _seng,
dq 0 cosf,
@ _ cosgy
or 0 cosf,
o

30| = (qosengg + 1ocosdg)tgh,
0

qoCospy — rysend,
B cosf,

9,

A equacéo (5.151)

0 =6,+—
0+6q

@-a+2 )+a
oq 9o aro — T

Com:
0| _
3 0 = cos¢y
96
ar i = —seng,

141

(5.160)

(5.161)
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Gl
0¢

= —qoSeng, — rycosP,
0
A equacéo (5.152)

e 04 04 0
(I»')=¢0+$0(p_po)+%O(Q_QO)+E‘O(T_TO)+ﬁ0(9_90) (5.162)
2
+£ 690+ 004"

Com:
9 _,
dq 0
ad
—¢ = —sengytg0o,
dq 0

¢
—| = —cospytgh,
or 0

a¢ _ qosengg + 1rocospy
26|, cos? 6,

09

% = (—qoseng, + rycosPy)tgby

0

Com isso, as matrizes dindmicas e de entrada sao dadas por:
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[ou du Ju du du au
auly, aly awl, °  3ql, arly ° @al, °
av av av av av av av
aul, al, awl, apl, ° arly © @6l, a9,
aw aw aw aw aw aw aw
aul, avly awly apl, aql, ° ° F0l, 39l
ap; adp| adp| 9p, Op| Op
aul, avly awl, 3pl, aql, arly © °  °
Ulo Vlo Wio Ply al, T'lo
ar ar ar ar ar ar
— = = = = = o0 o 0
duly dvly dwly 0dpl, dql, orly
0 0 0 0 a—lp 6_1/1 Oa—lp 6_1/)
daq|, or|, 6|, 99|,
0 0 0 0 96| a6 0 0 a6
dq|, Or|, 9|,
o o o 99| 99 29 . 24| 0¢
apo aqo aro 600 6¢)0_
r 0 0 0 0
av av
aow aw
0 6_620 0 a—&LO
dap a4
it L T
[B] to o (5.164)
aq aq
0 6—520 0 6—540
ar aw
al, 0 a8l
0 0 0 0
0 0 0 0
0 0 0 0

A matriz de observacao esta de acordo com 0s sensores disponiveis para a
mensuracdo dos parametros. Em geral, para obtencdo dos estados selecionados
para o modelo, € usual a utilizagdo de um giroscopio (taxa de variagdo da posigcédo

angular) e de um acelerobmetro (taxa de variacdo das velocidades) solidarios ao
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missil. Esta € uma segunda justificativa para o fato das equacdes serem todas
avaliadas no referencial do corpo em movimento, dado que estes sensores fornecem
medidas neste sistema de referéncia, podendo eventualmente serem integradas e
transformadas para a base do referencial inercial, possibilitando a obtencdo das

posicdo do missil a cada instante. Desta forma:

o ou ou 0 ou ou 0 ou 0
dul, advly dwl, dql, odrly a01,
av av ov ov 0 ov 0 ov ov
duly  dvly dwly 0dpl, arl, 01, 09l
ow| Jdw| Jdw ow ow 0 0 ow| Jdw
duly dvly odwly dpl, aql, da0l, 0dol,
0 0 0 0 0 0 0 0 0
[C] = 0 0 0 0 0 0 0 0 0
0 0 0 0
0 0 0 0 _1/J _1/J 0 _1/) _1/)
dq 0 or o a0 o d¢ o
0 0 0 0 26| 96 0 0 26
dq 0 or o d¢ o
ap| ap| 9 | ¢
o oo T T w0, %
Ply 941, 9Tl o 99l

E a matriz de incidéncia direta:

(5.166)

—
]
e
1]
Coococococooo

S OO OO OO0
S OO OO OO0
OO oo OO OCOoOOo

Com isto é possivel representar o sistema na forma de espacos de estados, maneira
adequada para a sintese do controlador a partir da teoria de controle moderno, tal

como ilustrada em Friedland (1986).
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{x=Ax+Bu+Fxp
y =Cx+ Du

A matriz [F] de perturbacdes € dada pelos termos oriundos das forcas de
perturbacdo ja mencionadas, como por exemplo rajadas. Desta forma, a matriz [F],

doravante denominada de matriz das perturbacdes € dada pela equacéo (5.167).

1
— 0 0 0 0 O
m
1
O — 0 0 0 O
m
1
O 0 — 0 0 O
m
O 0 0 — 0 O
[F] = Jx (5.167)
1
O 0 0 0 — O
Iy
0O 0 0 0 O 1
Iz
O 0 0 0O O O
O 0 0 0O O O
0O 0 0 O O o
Com:
(Fpere, )
Fzgerty
sert
x, ={ Pertz
P Mzgertx
Mzgerty
\MzgertzJ
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5.7. SIMULACAO DO ESCOAMENTO VISCOSO NO INTERIOR DO BOCAL

O escoamento no interior do bocal serd simulado utilizando um software com
codigo comercial de volumes finitos. Ainda que as opcdes ja estejam completamente
embutidas no programa, aqui serdo demonstradas e justificadas todas as opcoes
relativas as funcdes de interpolacdo utilizadas, tipo de escoamento em estudo e

modelo do fluido.

5.7.1. Conjunto de equacdes adotado

Levando em conta que o estudo pretendido visa verificar as diferencas entre
um bocal suposto de geometria 6tima gerado a partir do uso do método das
caracteristicas durante a regido na qual o empuxo estd sendo gerado em seu
maximo, o0 que se pretende verificar ndo é o regime transiente, mas sim o
escoamento em regime permanente. Desta forma, todos as taxas de variacdo das
propriedades sdo negligenciadas, acarretando no sistema de equacbes parciais
diferenciais para um escoamento turbulento dado pelas equacdes (5.168) a (5.174).

V- (pii) =0 (5.168)

V- (ptin) = V- (V) — Z—f |- a(?;:z) _ a(’?;v’) _ a(?)] (5.169)
V- (piiv) =V'(uVﬁ)—g—§+ :_6(?)_0(?)_5(?)] (5.170)
V- (piw) = V- o) — 20+ [ L) f’(ﬁ;;’v’) _ a(f;vzv'z)] (5.171)
V- (pil) = V- (u9T) + [_ g @(;;T’) _ a(ﬁ;y'r') B a(ﬁglz’T’)] (5.172)

V- (pik) =V- (%Vk) + P, — B pkw (5.173)
k
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aui

- He 2
V- =V — |V 2pS;;i " Sii —=pw—=——
(puw) <<H+O_m‘1> w) +]/2( Poij * oij 3pw ox;

5ij) = Bpw?
(5.174)

+2———"
Op,2 0x) 0y

Integrando estas equagdes num volume finito infinitesimal e utilizando o
teorema de Gauss para eliminar os divergentes e analisar as propriedades nas
faces, fazendo-se necessario o uso de funcdes de interpolacédo para a avaliacdo nas

faces.
5.7.2. Funcgdes de interpolagéo

No caso em questdo as funcdes de interpolacdo a serem adotadas sdo todas
de ordem superior, evitando-se assim o uso do método Upwind de 12 ordem que,
embora garanta convergéncia incondicional, pode acarretar em difusdo numérica,
conforme discutido em Maliska (2013), o que acarreta em solu¢céo inadequada dada
sua forte natureza dissipativa. Uma teoria para a difusdo numérica esta no fato da
interpolagdo upwind néo lidar, em problemas bi e tridimensionais, com a dire¢des
dadas pela composicdo das coordenadas das propriedades, incorrendo em
problemas numéricos. Maliska (2013), por outro lado, defende que estas oscilacdes
numéricas sdo advindas do fato deste ser um método com erro de truncamento de
12 ordem e de ordem dissipativa, ndo capturando de maneira tdo adequada como

funcdes de ordem superior, a dinamica real do escoamento.

Tendo em vista este horizonte, a escolha das fun¢des de interpolacéo foi feita
de modo a se priorizar esquemas com erros de ordem superior. Nao serao
apresentadas as dedugdes relativas as fungdes de interpolacdo por ndo fazerem
parte do escopo do trabalho, mas tanto Malalasekera (1995) quanto Maliska (2013)

as trazem de maneira bem detalhada.

Para os termos difusivos, a escolha foi pelo esquema de diferencas centradas
(CDS - Central Difference Scheme) dado seu erro de truncamento de 22 ordem.

Este esquema estd apresentado pela equacdo (5.175) para a face leste (E) do
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volume cujo centro € dado pelo ponto P, de uma malha estruturada. Ndo serdo
discutidas malhas ndo estruturadas no presente trabalho pois escopo aqui é de

somente ilustrar ao leitor os esquemas de interpolacao utilizados.

a¢ _ ¢E - ¢)P 2
xl, ~  Ar, + 0(Ax%)

(5.175)

Por sua vez, os termos convectivos - muito importantes no problema em
questdo dada o escoamento veloz no interior — foram também adotados de ordem
superior. A escolha ndo se deu por um s6 tendo em vista questdes de estabilidade e
convergéncia dependo do problema adotado. Tanto o método Upwind de 22 ordem
quanto o método QUICK (Quadratic Upwind Interpolation Convective Kinematics)
foram utilizados. As fungbes de interpolacdo, em relacdo a figura 5.16, estao
apresentadas pelas equacdes (5.176) e (5.177).

| AX | AX
I 1 A
xX/2
uu U u D
L] L] —_—r -
f

D:Downwind cell
U:Upwind cell

UU: 2nd Upwind cell
f.face

Figura 5.16 — Malha estruturada (extraido de Saltara, 2014)

e Upwind de 22 ordem

3 1 .
br = §¢U - §¢UU + 0(Ax?) (5.176)
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e QUICK

_ 6¢y + 3¢p — dyu (5.177)

d)f 3 + 0(AX3)

5.7.3. Escolha do fluido

Embora o bocal tenha sido dimensionado para o escoamento dos gases de
combustdo do KNDX, como néo foi encontrada a composicao deste e o escopo é de
somente comparar o padrao de escoamento entre dois bocais de mesma razdo de
areas de saida e garganta, um com geometria 6tima e outro com geometria conica,
adotou-se o ar como fluido de trabalho. Este esta sujeito as mesmas condicdes de
contorno de entrada (p. = 2,5 MPa e T, = 1350 K) e saida (pgmp = 101,325 kPa, T, =

300 K) em relacéo ao projeto inicial.

Foram simuladas tanto situagdes viscosas quanto ndo viscosas para cada
uma das geometrias propostas e fim de realizar as comparacfes do efeito viscoso
no escoamento. Para o caso inviscido as Unicas consideracdes foram a adocéo do
gas como ideal e utilizacdo de polinbmios em funcao da temperatura para o célculo
do calor especifico, este j& embutido no software. Para o caso viscoso, além destes
parametros, utilizou-se a lei de viscosidade de Sutherland (CFD Online, 2013) para o

ar, dada pela equacéo (5.178).

3
, )5 ot S (5.178)

.uz.uref< T+S

Tre f

Com T,.r uma temperatura de referéncia, u,..r a viscosidade de referéncia calculada
aT,.r €S a temperatura de Sutherland. Para o caso do ar, py.r = 1,716.10"5 kg/

(m.s), Trey = 273.15K € S = 110,4 K.
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A condutividade térmica também é variavel de acordo com a teoria cinética

dos gases, sendo dada por (5.179) conforme explicitado em UC Davis (2006).

k=" \5 R 3

15R (4 cpM 1) (5.179)
4 M

Com M a massa molecular do fluido, ¢, o calor especifico a presséo constante, R a

constante dos gases perfeitos e u a viscosidade dinamica calculada a partir da

formulag&o de Sutherland.
5.7.4. Malhas e estratégias de simulagéo

Para todas as simulacOes realizadas foram usadas malhas grosseiras e
outras mais refinadas com o mesmo setup de simulacdo em busca de se fazer um
estudo de convergéncia, ou seja, verificar se a solucdo é independente da malha.
Em geral a malha refinada possui ao menos o dobro dos elementos da malha mais
grosseira, por sua vez ja fina, a fim de capturar o fendbmeno corretamente e buscar

estabilidade da solucéo. As figura 5.17 a 5.20 ilustram as malhas utilizadas.

Figura 5.17 — Malha grosseira para o caso do bocal de geometria 6tima
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Figura 5.18 — Malha refinada para o caso do bocal de geometria 6tima

Figura 5.19 — Malha grosseira para o caso do bocal cdnico

Figura 5.20 — Malha refinada para o caso do bocal cénico
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6. RESULTADOS E DISCUSSOES

6.1. AVALIACAO UNIDIMENSIONAL PRELIMINAR

6.1.1. Pressao no interior da camara de combustao

Para validacdo do modelo adotado serdo comparadas duas condi¢des tais
quais apresentadas em Nieble (1996), o qual trabalhou fazendo a aproximacdo da
variagdo de pressao no interior da camara de combustdo durante o processo de
queima para 0 caso em regime permanente, com mesmas hipoteses aqui adotadas.
Seu trabalho consistiu no ensaio de algumas geometrias de grdo bem como
condicbes da camara de combustdo no inicio deste processo para 0 caso de um
motor-foguete para aplicacdes agricolas. No presente estudo somente sera levado
em conta 0s casos ensaiados para um grao-propelente de cavidade cilindrica

6.1.1.1. Caso 1

Para este caso, serdo considerado os dados apresentados na tabela 6.1.

Tabela 6.1 — Dados para o caso 1 do modelo (Nieble, 1996)

Parametro Valor
Didametro da garganta do bocal (D2) 0,003 m
Comprimento do grao-propelente (L) 14m
Pressdo de combustéo de projeto (Pc) 1250 psi
a 4,1 x107
n 0,65
Massa molar do combustivel (M) 207 kg/kmol

Continua
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Conclusao da tabela 6.1 — Dados para caso 1 do modelo (Nieble, 1996)

Densidade do propelente (pcomb) 1300 kg/m3
Razao de calores especificos (k) 11
Temperatura de queima (Tc) 1700 K
Incremento de tempo (s) 0,001 s
Raio interno do gréo-propelente 0,003 m
Raio externo do grao-propelente 0,009 m

Como resultado da simulacdo para este caso, utilizando o cdodigo

desenvolvido para Matlab conforme apresentado no apéndice B, obteve-se o gréfico
apresentado na figura 6.1.

Variagao da pressao no interior da camara de combustao
: ! ! ! ! ! ! !

[

Pressdo P_(Pa)

0 0.1 0.2 0.3 0.4 05 06 07 0.8 09
Tempo (s)

Figura 6.1 — Comportamento da presséo no interior da cAmara de combustdo em fungéo do tempo de

gueima do propelente

Comparando os resultados obtidos com aqueles apresentados em Nieble
(1996), apresentado na figura 6.2, nota-se alguma variacdo no que diz respeito ao

tempo para se chegar no pico de pressao no interior da camara de combustéo,
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sendo no modelo adotado este mais rapido em cerca de 0,15 s, fruto das diferencas
de abordagem na modelagem do sistema, tendo em vista que no caso considerado,
resolveu-se uma equacéo diferencial ordinaria ndo-homogénea enquanto em Nieble
(1996) foi considerado um modelo ja em regime permanente, negligenciando
qualquer efeito a massa acumulada no interior da camara de combustao enquanto
se da o processo. O pico de pressao € razoavelmente proximo em termos relativos,
tendo em vista que no caso ensaiado este se da em torno de 55 MPa enquanto no
trabalho de Nieble (1996), 48 MPa. Novamente deve-se levar em conta as
diferencas de abordagem na modelagem do fendmeno. No modelo adotado tomou-
se como parada o instante em que 0 escoamento deixa de ocorrer, isto €, quando a
camara de combustdo passa a ter somente ar atmosférico em seu interior, o que

ocorre em cerca de 0,9 s.

Pressdo de Combustio

7,00E+03 +— - e e s

6,00E+03 ‘
5,00E402 |
4008402 |
23,0040
2,006403 |

1,00E+03 J

0,00E+00

25E-02
28E-0
50E-0
73E-0
95E-0
18E-0
40E-0
63E-0
85E-0 i
07E-0
30E-0
52E-0
75E-0
97E-0
20E-0
42E-0

0.0000000000E+00 -
2 -
4
6
9
1
1
1
1
2
2
2
2
2
3
3
3
3
4
4
4
4
4
5
5
5
5
6
6
5
6
6
7
7
7
7
8
8
8
8

tempo (s)

Figura 6.2 — Resultado da variagéo da pressao no interior da cAmara de combust&o obtido por Nieble
(1996)

Outra fonte de desvio para os valores dos resultados, além da questdo de

diferencas de modelo, esta na conversao do parametro a para unidades do Sistema
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Internacional de Unidades. Esta foi feita dividindo o valor apresentado em Nieble
(1996) por uma constante que faz a conversdo entre pounds per square inch para

Pascal, o que pode ter incorrido em desvios em relacdo ao valor originalmente
apresentado.

6.1.1.2. Caso 2

Para este caso, serdo considerado os dados apresentados na tabela 6.2.

Tabela 6.2 — Dados para o caso 2 do modelo

Parametro Valor
Didmetro da garganta do bocal (D2) 0,003 m
Comprimento do grao-propelente (L) 0,6 m
Pressdo de combustéo de projeto (Pc) 1000 psi
a 4,1 x 107
n 0,65
Massa molar do combustivel (M) 207 kg/kmol
Densidade do propelente (pcomb) 1300 kg/m3
Razao de calores especificos (k) 1,1
Temperatura de queima (T¢) 1500 K
Incremento de tempo (s) 0,001 s
Raio interno do grao-propelente 0,005 m
Raio externo do grao-propelente 0,015m

Como resultado da simulagdo para este caso, utilizando o cdédigo
desenvolvido para Matlab conforme apresentado no apéndice B, obteve-se o gréfico
apresentado na figura 6.3.
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d Variagao da pressao no interior da camara de combustao
45 T T T T T T T T T

[

Presséo P_(Pa)

0 0.1 02 03 0.4 05 06 07 0.8 09 1
Tempo (s)

Figura 6.3 — Comportamento da pressao no interior da camara de combustdo em funcdo do tempo de

gueima do propelente

Novamente, comparando-se com a figura 6.4, 0 que se nota é concordancia
de forma, muito embora neste segundo caso o tempo de queima e a pressao
apresentem desvios maiores, no caso, 0,3 s até chegar no pico da pressdo da
camara gue, neste caso estd em 42 MPa no modelo adotado comparado a 31 MPa
apresentado por Nieble (1996). Novamente a maior causa para o desvio esta em
conversdo de unidades do parametro a e, principalmente, nas diferencas entre os

modelos adotados.
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Pressdo de Combustéo - Caso 3
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Figura 6.4 — Resultado da variagdo da presséo no interior da cAmara de combustéo obtido por Nieble
(1996)

Neste segundo caso, dado o maior volume da camara de combustéo
acarretado pelo aumento do diametro externo, bem como presenca de menores
pressodes iniciais, 0 que se tem € um tempo maior para a fuga completa dos gases

de combustéo, sendo esta processada em cerca de 1,2 s.

6.1.2. Empuxo

Seguindo a equacéao (5.10), simulou-se o empuxo fornecido ao corpo devido a
gueima do propelente sélido, segundo as curvas ilustradas pelas figuras 6.1 e 6.3.
Tal simulacao foi realizada para diferentes razdes de areas de secdo de saida e da
garganta do bocal, supondo este de dimensdes fixas, a fim de ilustrar o efeito da
variacdo de area no niumero de Mach da sec¢do de saida em um bocal convergente-
divergente ja blocado, demonstrando que esta maior velocidade de escape dos

gases - produtos da combustdo — implica em maiores empuxos. Tal unicidade de
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namero de Mach para uma dada razao de éareas, isto é, este permanece constante

dado o bocal estar blocado, é demonstrada pela equacgéo

K 1 k+1
— 2(k-1)
A3 _ MZ 1 + ( 2 )M32

Para escoamento de gases perfeitos, em regime permanente e sem perdas.

Analisando a equacédo (5.10) também se nota que, para uma dada razao de
area fixa, a curva de empuxo deve ter a mesma forma que a de pressao, ou seja, ha

um pico de empuxo para uma dada geometria de bocal e condi¢bes de escoamento.

A figura 6.5 apresenta o empuxo para seis razbes de éareas diferentes

relativos ao caso 1 de simulacdo. Ja a 6.6, para o caso 2.

Variagao do empuxo em fungao do tempo

7000 T T T T T T ! : A
: : : L ——AJA,=2
: : E ; : : : | ——AA =3
! : : ; X ] : ; 322
EDUD R RRREEE R PP SR .............. AAAAAAAAAAAAAAA ............... ,, ............... ............... _ H
: : : : . - : | ——aga,=a
: : : | : ; : | ——AyA, =5
5000_”.,.,.,”.,.§ .............. .............. ............... ,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,, ............... A3fA2:10 H
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o
*
=
a
LI% BB s s bt ool s N e b 5 i AR i B 55 i, s i s i R0 5 i 0 3 e P00 s it 3 e s s b e s et -
2000} fo S ............ ............. ............... ............... ............... ............... .............. _
1w kLA 2 ............... ........... P . VS, ............... ............... ............... ............... .............. -
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Figura 6.5 — Empuxo em funcdo do tempo de queima para o caso de simulacdo 1
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Variagao do empuxo em fungao do tempo
6000 ! T ! g ! ! : !

5000

4000

3000

Empuxo (N}

2000

1000

Figura 6.6 — Empuxo em funcdo do tempo de queima para o caso de simulagdo 2

Da avaliacédo dos resultados, o que se tem € perfil concordante com aquele da
pressao no interior da camara de combustdo, conforme ja discutido. Também é
notavel um maior empuxo para uma maior razdo de areas, efeito este da maior
velocidade de escoamento na secdo de descarga do bocal, termo este multiplicativo

na equacao 5.10, o que acarreta em aumento da amplitude.

Do exposto, nota-se que ha concordancia com relacdo ao apresentado na
bibliografia, conforme pode ser visto para o perfil de um grdo propelente tubular
apresentado na figura 4.4, também ilustrada em Sutton (2004). Nela h4 um pico de
empuxo em funcdo do tempo, tal como obtido segundo equacionamento
apresentado, com gueda bastante acentuada apos este, isto €, momento em que a
pressao no interior da camara comeca a decrescer, momento este em que se tem o

inicio de seu esvaziamento.



160

6.2. PROJETO BIDIMENSIONAL DO BOCAL CONVERGENTE-
DIVERGENTE

6.2.1. Projeto da porgéo supersonica pelo método das caracteristicas

O primeiro caso, representado pela figura 6.7 ilustra aquele apresentado por
Anderson (2003), com os parametros listados na tabela 6.3. Tal caso assim como o
que se segue tem como escopo garantir que o codigo utilizado esta adequado. Em

outras palavras, tém como funcéo validar o codigo.

Tabela 6.3 — Parametros (Anderson, 2003)

Mach na saida (M) 2,4
Raz&o de calores especificos (k) 14
Altura da garganta (h;,;) 1
N° de caracteristicas (n) 7
Angulo inicial (6;,,) 0,375°

Projeto de Bocal Minimo Supersonico

Diametro (u.c.)

55 ; ; ; ; : i
0 1 2 3 4 5 6 it 8 9

Comprimento (u.c.)

Figura 6.7 — Bocal divergente com parametros fornecidos em Anderson (2003)
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Tabela 6.4 — Dados calculados pelo programa segundo os valores de entrada da tabela 6.3

Ponto K, K_ (7] v M u x y
0 - - - - - - 0 1
1 0 0,7500 0,3750 0,3750 1,0404 73,9804  0,2492 0
2 0 6,7494 3,3747 3,3747 1,1922 57,0126  0,4540 0,3834
3 0 12,7488  6,3744 6,3744 1,3073 49,9026  0,5261 0,5003
4 0 18,7483  9,3741 9,3741 1,4133 45,0371  0,5826 0,5819
5 0 2477477 12,3738 12,3738 15158 41,2785  0,6325 0,6508
6 0 30,7471 15,3736 15,3736 16173 38,1938 0,6793 0,7142
7 0 36,7465 18,3733 18,2733 1,7191 355694  0,7244 0,7758
8 0 36,7465 18,3733 18,3733 1,7191 355694  1,1708 1,3889
9 -6,7494 6,7494 0 6,7494 1,3209 49,2077  0,7598 0
10 -6,7494 12,7488  2,9997 9,7491 1,4263 44,5183  0,8998 0,1575
11 -6,7494 18,7483  5,9994 12,7488 15285 40,8613 1,0118 0,2784
12 -6,7494 24,7477  8,9991 15,7486 1,6300 37,8436 1,1127 0,3860
13 -6,7494 30,7471 11,9988 18,7483 1,7320 35,2667 1,2086 0,4890
14 -6,7494 36,7465 14,9986 21,7480 1,8355 33,0123 1,3028 0,5923
15 -6,7494 36,7465 14,9986 21,7480 1,8355 33,0123 2,3334 1,7373
16 -12,7488 12,7488 0 12,7488 15285 40,8613 1,0798 0
17 -12,7488 18,7483  2,9997 15,7486 1,6300 37,8436 1,2279 0,1280
18 -12,7488 24,7477  5,9994 18,7483 1,7320 35,2667 1,3638 0,2464
19 -12,7488 30,7471  8,9991 21,7480 1,8355 33,0123 1,4955 0,3634
20 -12,7488 36,7465 11,9988 24,7477 1,9412 31,0070 1,6268 0,4838
21 -12,7488 36,7465 11,9988 24,7477 1,9412 31,0070  3,1916 1,9434
22 -18,7483 18,7483 0 18,7483 1,7320 35,2667 1,4103 0
23 -18,7483 24,7477  2,9997 21,7480 1,8355 33,0123 1,5814 0,1227
24 -18,7483 30,7471  5,9994 24,7477 19412 31,0070 1,7499 0,2474
25 -18,7483 36,7465 8,9991 27,7474  2,0499 29,1975 1,9209 0,3791
26 -18,7483 36,7465  8,9991 27,7474  2,0499 29,1975  4,1300 2,1173
27 -24,7477 24,7477 0 24,7477 1,9412 31,0070 1,7895 0
28 -24,7477 30,7471  2,9997 27,7474  2,0499 29,1975 1,9983 0,1284
29 -24,7477 36,7465 59994 30,7471  2,1622 27,5479  2,2135 0,2675
30 -24,7477 36,7465 59994 30,7471  2,1622 27,5479  5,2194 2,2607
31 -30,7471 30,7471 0 30,7471  2,1622 27,5479  2,2517 0
32 -30,7471 36,7465  2,9997 33,7468 2,2787 26,0309 2,5173 0,1429
33 -30,7471 36,7465  2,9997 33,7468 2,2787 26,0309 6,5170 2,3628
34 -36,7465 36,7465 0 36,7468  2,4000 24,6247  2,8410 0
35 -36,7465 36,7465 0 36,7468  2,4000 24,6247  8,0855 2,4039
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A figura 6.8 bem como a tabela 6.5 foram extraida de Anderson (2003) e
trazem a geometria e propriedades do bocal de pardmetros analogos aos adotados
para a solucdo apresentada nas figuras.

Figura 6.8 — Curvas caracteristicas de meio bocal plano (Anderson, 2003)

Tabela 6.5 — Valores de cada ponto das caracteristicas da figura 6.8 (Anderson, 2003)

4 94
: % '1 'i
= = X X
- -
lI l. 2 5
Pointno. < > a M "
1 075 0 0378 narst 104 141
2 675 9 1378t 331 119 572
3 1275 0 6375" 63757 11 498
4 1875 0 91375¢ 93757 141 452
5 2475 0 12375' 12378 152 411
6 3075 0 153757 15318 1& 381
7 3675 0 183758 181 1M 156
8 36 75" o! 172 356!
9 675t 675 of 675 132 493
10 1278t -678' 3 975 143 444
1 1875t -6 75 6 1275 183 408
12 2475 ~6 75 9 1575 163 78
13 3075 -675" 12 1875 173 353
14 16 75° ~678% 15 2175 184 29
15 3675t ~6757 1S 21 78" 134 329
16 1278  -1275 o' 1275 153 408
17 1878 -1275° 3 1575 163 378
13 2475 -1273! 6 1875 173 353
19 3075 -12.15¢ 9 2175 184 329
20 3675¢  -1275' 12 2475 194 310
21 678 -12787 12 2475° 19et o
2 1875 1875 0 1875 173 353
3 24 75 -18 75¢ 3 2175 184 29
b 3075 -1875' 6 2475 19 310
25 36 75 -18 75! 9 2115 205 292
26 3675t —1875! 9! 2175 205 2092
2?7 247157 -27 o 2475 194 310
28 30 75° ~2475% 3 2175 208 292
29 36 75F —24.78! 6 075 216 276
30 16 75! ~2473 & 30 78¢ 2160 276
3l 3075 3075 o 075 216 276
32 36 75¢ -3075 3 17 22 260
33 36 75" - 3075 3 3375 228" 260
34 36 75° ~3675 o' 1675 24 246

5 6758 -3675! o' 3675 24 26
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Do cébmputo deste caso, pode-se notar que as linhas caracteristicas tem
distribuicdo semelhantes, entretanto, somente da andlise destas ndo se pode chegar
numa conclusdo acerca da consisténcia dos calculos, tendo em vista que néo se
sabe ao certo a precisdo com a qual a figura 6.8 foi feita. A melhor alternativa é
verificar os valores apresentados nas tabelas 6.3 e 6.5 para cada um dos pontos de

encontro entre as linhas caracteristicas do escoamento interno ao bocal.

E facil notar a consisténcia de cada um doo célculos realizados em
comparacao com aqueles informados por Anderson (2003). Nota-se que 0s desvios
sdo na 32 casa decimal e podem facilmente ser atribuidos aos arredondamentos
realizados pelo MatLab durante a rotina de calculo. Desta forma ha indicios fortes de
que o modelo proposto para o caso de um bocal plano esta adequado para o
posterior projeto do contorno do bocal divergente a ser utilizado no modelo de missil

proposto.

O caso que segue esta descrito em Hodge (1995). Seréo realizados todos 0s
calculos de forma a garantir completa consisténcia do programa computacional, ja
evidenciada pela comparacdo dos resultados obtidos face aqueles apresentados na
bibliografia. Uma vantagem deste segundo caso em analise é o fato de o autor
apresentar também as coordenadas de cada um dos pontos, permitindo mais um
grau de comparacao. A tabela 6.7 e a figura 6.9 apresentam os resultados obtidos
com a simulagdo computacional proposta, enquanto a tabela 6.8 traz os valores dos
angulos notaveis, invariantes de Riemann e posicdo dos pontos fornecidos por
Hodge (1995)

Tabela 6.6 — ParAmetros (Hodge, 1995)

Mach na saida (M,) 1.92
Razao de calores especificos (k) 14
Altura da garganta (h;,;) 1
N° de caracteristicas (n) 7

Angulo inicial (6;,,) 0,075°




Diametro (u.c.)

Projeto de Bocal Minimo Supersonico
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i

2
Comprimento {u.c.)

i
25

Figura 6.9 — Bocal divergente com parametros fornecidos em Hodge (1995)

45

Tabela 6.7 — Dados calculados pelo programa segundo os valores de entrada da tabela 6.5

Ponto K, K_ 0 v M U x y
0 - - - - - - 0 1
1 0 0,1500 0,075 0,0750 1,0101 81,9010 0,1436 0
2 0 4,1501 2,075 2,0750 1,1357 61,7066  0,2961 0,4948
3 0 8,1502 4,0751 4,0751 1,2205 55,0204 0,3418 0,5788
4 0 13,1503  6,0751 6,0751 12963 50,4795 0,3754 0,6323
5 0 16,1504  8,0752 0,0752 1,3680 46,9682  0,4039 0,6742
6 0 20,1505 10,0752 10,0752 1,4375 44,0800 0,4295 0,7102
7 0 24,1506 12,0753 12,0753 15057 41,6164  0,4534 0,7430
8 0 24,1506 12,0753 12,0753 15057 41,6164  0,7620 1,1630
9 -4,1501 4,1501 0 4,1501 1,2234 54,8226  0,6146 0
10 -4,1501 8,1502 2,0000 6,1501 1,2991 50,3325 0,7164 0,1380
11 -4,1501 13,1503  4,0001 8,1502 1,3707 46,8501  0,7929 0,2344
12 -4,1501 16,1504  6,0001 10,1502 1,4401 43,9808 0,8583 0,3236
13 -4,1501 20,1505  8,0002 12,1503 15083 41,5305 0,9177 0,3838
14 -4,1501 24,1506 10,0002 14,1503 15759 39,3861 0,9736 0,4492

Continua




165

Conclusao da Tabela 6.6 - Dados calculados pelo programa segundo os valores de entrada da

tabela 6.5

15 -4,1501 24,1506 10,0002 14,1503 1,5759 39,3861 1,7513 1,3560
16 -8,1501  8,1502 0 8,1502 1,3707 46,8501  0,8424 0

17 -8,1501 13,1503  2,0000 10,1502  1,4401 43,9808 0,9387 0,1012
18 -8,1501 16,1504  4,0001 12,1503 1,5083 41,5305 1,0221 0,1867
19 -8,1501 20,1505 6,0001 14,1502 1,5759 39,3861  1,0985 0,2644
20 -8,1501 24,1506 8,0002 16,1504 1,6436 37,4762 1,1709 0,3379
21 -8,1501 24,1506 8,0002 16,1504 1,6436 37,4762 2,2499 1,4350
22 -12,1503 13,1503 0 12,1503 1,5083 41,5305 1,0520 0

23 -12,1503 16,1504 2,0000 14,1503 1,5759 39,3861 1,1513 0,0877
24 -12,1503 20,1505 4,0001 16,1504 1,6436 37,4762 1,2432 0,1688
25 -12,1503 24,1506 6,0001 18,1504 1,7116 35,7510 1,3310 0,2468
26 -16,1504 24,1506 6,0001 18,1504 1,7116 35,7510 2,7279 1,4937
27 -16,1504 16,1504 0 16,1504 1,6436 37,4762 1,2659 0

28 -16,1504 20,1505 2,0000 18,1504 1,7116 35,7510 1,3730 0,0825
29 -16,1504 24,1506 4,0001 20,1505 1,7801 34,1783 1,4763 0,1631
30 -16,1504 24,1506  4,0001 20,1505 1,7801 24,1783  3,2236 1,5370
31 -20,1505 20,1505 0 20,1505 1,7801 34,1783 1,4955 0

32 -20,1505 24,1506 2,0000 22,1505 1,8495 32,7304 1,6147 0,0817
33 -20,1505 24,1506 2,0000 22,1505 1,8495 32,7304 3,7541 1,5648
34 -24,1506 24,1506 0 24,1506  1,9200 31,3888 1,7504 0

35 -24,1506 24,1506 0 24,1506  1,9200 31,3888  4,3316 1,5749

A despeito do valor inicial do nimero de Mach que possui um desvio e implica

em desvios na posicdo dos primeiros pontos, todos os demais estdo apresentados

de forma bastante consisténcia no que diz respeito a aqueles calculados por Hodge

(1995). A questdo do primeiro numero de Mach esta relacionada a metodologia

utilizada para seu computo através do método de Newton-Raphson que requereu

um chute inicial. Desta forma se inadequado a raiz da funcdo apresentada pode

divergir em relagdo ao valor que se esperava. Conforme dito, entretanto, o desvio

nao foi significativo e permitiu obtencdo de um bocal divergente de comprimento

minimo se nao igual, bastante consistente com aquele apresentado na bibliografia.



166

Tabela 6.8 — Solucao de Hodge (1995) (a definicao de K+ e K- em Hodge é invertida quando

comparada a Anderson, 2003)

Point K K 9 3 M " x y

a o — — - - ol 0.000 1.000

1 0.151 0.000 0.075 0.075 1.014 80.409 0.170 0.000
2 4.151 0.000 2.075 2.075 1.136 61.667 0.318 0.458
3 8.151 0.000 4.075 4.075 1.221 55.004 0.367 0.548
4 12.151 0.000 6.075 6.075 1.297 50.470 0.403 0.605

5 16.151 0.000 8.075 8.075 1.368 46.963 0.434 0.650

6 20.151 0.000 10.075 10.075 1.438 44.077 0.461 0.689

7 24.151 0.000 12.075 12.075 1.506 41.614 0.487 0.724

8 24.151 0.000 12.075 12.075 1.506 41.614 0.818 1.175

9 4.151 —-4.151 0.000 4.151 1.224 54,806 0.613 0.000
10 8.151 —-4.151 2.000 6.151 1.299 50.323 0.715 0.138
11 12.151 -4.151 4.000 8.151 1.371 46.844 0.792 0.235
12 16.151 —-4.151 6.000 10.151 1.440 43.977 0.857 0.314
13 20.151 —4.151 8.000 12.151 1.508 41.528 0.917 0.384
14 24.151 —-4.151 10.000 14.151 1.576 39.384 0.973 0.450
15 24.151 —4.151 10.000 14.151 1.576 39.384 1.751 1.357
16 8.151 —-8.151 0.000 8.151 1.371 46.844 0.842 0.000
17 12.151 -8.151 2.000 10.151 1.440 43.977 0.938 0.101
18 16.151 -8.151 4.000 12.151 1.508 41.528 1.022 0.187
19 20.151 -8.151 6.000 14.151 1.576 39.384 1.098 0.265
20 24.151 -8.151 8.000 16.151 1.644 37.474 1.170 0.338
21 24.151 -8.151 8.000 16.151 1.644 37.474 2.250 1.436
22 12.151 -12.151 0.000 12.151 1.508 41.528 1.052 0.000
23 16.151 -12.151 2.000 14.151 1.576 39.384 1.151 0.088
24 20.151 -12.151 4.000 16.151 1.644 37.474 1.243 0.169
25 24.151 -12.151 6.000 18.151 1.712 35.750 1.331 0.247
26 24.151 -12.151 6.000 18.151 1.712 35.750 2.729 1.495
27 16.151 -16.151 0.000 16.151 1.644 37.474 1.266 0.000
28 20.151 -16.151 2.000 18.151 1.712 35.750 1.373 0.083
29 24.151 —-16.151 4.000 20.151 1.780 34.177 1.476 0.163
30 24.151 —-16.151 4.000 20.151 1.780 34.177 3.225 1.538
31 20.151 -20.151 0.000 20.151 1.780 34.177 1.495 0.000
32 24.151 -20.151 2.000 22.151 1.850 32.729 1.615 0.082
33 24.151 -20.151 2.000 22.151 1.850 32.729 3.756 1.566
34 24.151 -24.151 0.000 24.151 1.920 31.388 1.750 0.000
35 24.151 -24.151 0.000 24.151 1.920 31.388 4.334 1.576

E de alguma valia calcular as razdes de area para este bocal tanto com a
expressao ja desenvolvida em Zucker (1977) bem como com os valores obtidos a
partir da simulacdo computacional, assumindo o bocal com secdes circulares, e

verificar o quao préximos eles sao.

K k+1
-1, 2(k-1)
Asaida Mgarganta 1+ 2 Msaida

] k—1
Agarganta Msalda 1+ TMszaida

A tabela 6.8 apresenta o resultado dos calculos
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Tabela 6.9 — Comparacao da razéo de areas calculada para o caso unidimensional e bidimensional

‘ Férmula Zucker (1977) Calculado
Anderson (2003) 2,4031 5,7787
Hodge (1995) 1,5804 2.4803

Nota-se que ha um grande desvio em relacdo aquele valor calculado para o
caso unidimensional isentropico e aquele para o caso bidimensional a partir de
técnica que envolve a hipétese de escoamento potencial. Naturalmente espera-se
que os valores calculados para o caso bidimensional sejam mais consistentes do
gue aqueles para o caso unidimensional dadas as simplificacbes demasiadas
supostas para o computo do ultimo, como por exemplo descontar os efeitos do
contato das ondas de Mach com as paredes. Também vale ressaltar que o bocal
unidimensional em nada garante um bocal de minimo comprimento, mas téo
somente um calculo preliminar da razdo de areas para que o valor do numero de

Mach na saida seja atingido.

Tais analises permitem afirmar com boa seguranca que o0 programa
desenvolvido € geral para a geracdo de geometria e cOmputo das propriedades
internas de um bocal divergente de comprimento minimo. Vale ressaltar, conforme ja
citado na revisdo da bibliografia, que aa abordagem aqui utilizada é a mesma
apresentada por Shapiro (1953) na qual se faz a separacdo do escoamento interno
dentro do bocal tal como na analise de um fdlio. Isto quer dizer que para a malha
interna assume-se um escoamento irrotacional, isentrépico, isto €, potencial.
Enquanto todos os efeitos viscosos e térmicos sdo investigados na camada limite

aderida a parede interna do bocal.
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6.3. ESCOAMENTO TRANSIENTE EM BOCAL QUASE-UNIDIMENSIONAL

6.3.1. Validacdo do modelo

A fim de validar o modelo adotado para a solugdo do escoamento num bocal
quase-unidimensional, conforme apresentado na se¢do 5.3 do presente relatorio,
simular-se-a 0 mesmo caso apresentado no capitulo 7 de Anderson (1995). Para
este caso as condi¢des iniciais estdo listadas na tabela 6.10 junto com demais

parametros de referéncia.

Tabela 6.10 — Parametros do modelo apresentado por Anderson (1995) para um bocal quase-

unidimensional

Condicdes iniciais p?=1-0,3146x

T = 1—0,2314x

V0 = (0,1 + 1,09x) [T°

L l

Comprimento do bocal L=30m
Numero de intervalos no comprimento n =30
Razdao de calores especificos k=14
Variacdo da area A(x) =1+ 2,2(x —1,5)?
Numero de iteracfes 1400
Numero de Courant 0,5

Antes de apresentar os resultados numéricos vale demonstrar que a solucéo
€ consistente em todos os pontos do dominio desde o transiente até chegar no
regime permanente. As figuras 6.10, 6.11 e 6.12 ilustram, respectivamente, a
temperatura, densidade e velocidade adimensionais em todos os pontos do dominio

fluido adotado.
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Convergéncia da solugdo em regime per para a temperatura adi ional T
12 T T T T

Temperatura adimensional
° °
> S =
( (
1 L

Tempo (s)

Figura 6.10 — Variagdo da temperatura adimensional em cada ponto do dominio fluido ao longo da

simulacéo

idade adi ional p
T T

Convergéncia da solu¢ao em regime per te paraad
14 . T

Densidade adimensional

e
\

02 5 =1
7 —r* —

0 | I 1 I
0 5 10 15 20 25

Tempo (s)

Figura 6.11 — Variagdo da densidade adimensional em cada ponto do dominio fluido ao longo da

simulacéo
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Convergéncia da solugao em regime permanente para a velocidade adimensional V
T T

25/ T

Velocidade adimensional

Tempo (s)

Figura 6.12 — Variagdo da densidade adimensional em cada ponto do dominio fluido ao longo da

simulagéo

Dos graficos apresentados nota-se que o regime permanente € de fato
atingido em cada ponto da malha fluida, isto é representado pelas linhas horizontais
continuas e invariantes apés os 6s. O transiente da densidade é bastante elevado
para 0os nés da malha mais préximos do bocal, indicando que as condicfes iniciais
adotadas ndo sdo tdo proximas assim do que se espera em regime permanente,
além de levar em consideracdo a inclusao das condi¢bes de contorno que, a cada
iteracdo, alteram o valor das propriedades ao longo do escoamento. O fato de as
condicBes iniciais divergirem um pouco do regime permanente permite visualizar
que, de fato a solucdo para o problema adequa o escoamento ao longo do bocal até
atingir um estado em que as propriedades sdo constantes. Isto valida a hipotese de
que a solucao proposta é valida para a simulagdo do problema de esvaziamento da

camara de combustao.

Expostas estas conclusdes acerca do comportamento geral da solugcédo ao
longo do tempo, passa a ser possivel comparar os dados obtidos com a simulagéo
em comparagao com aqueles tabulados em Anderson (1995). As tabelas 6.11, 6.13
e 6.15 ilustram os resultados obtidos a partir do coédigo para Matlab escrito no
instante inicial, apds o primeiro passo temporal e apos 1400 passos de tempo, ja as
tabelas 6.12, 6.14 e 6.16 foram extraidas diretamente de Anderson (1995).
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Tabela 6.11 — Resultados obtidos pelo autor a partir da simulagédo do caso exposto no capitulo 7 de

Anderson (1995) para o instante 0 de simulacéo

I x/L AlA* p/po V/ag TITo p/po M Vazao
1 0 5.950 1.000 0.103 1.000 1.000 0.103 0.610
2 0.100 5.312 0.969 0.207 0.977 0.946 0.209 1.063
3 0.200 4.718 0.937 0.311 0.954 0.894 0.318 1.373
4 0.300 4.168 0.906 0.412 0.931 0.843 0.427 1.555
5 0.400 3.662 0.874 0.511 0.907 0.793 0.536 1.635
6 0.500 3.200 0.843 0.607 0.884 0.745 0.645 1.636
7 0.600 2.782 0.811 0.700 0.861 0.699 0.754 1.579
8 0.700 2.408 0.780 0.790 0.838 0.653 0.863 1.483
9 0.800 2.078 0.748 0.877 0.815 0.610 0.972 1.364
10 0.900 1.792 0.717 0.962 0.792 0.568 1.081 1.236
11 1.000 1.550 0.685 1.043 0.769 0.527 1.190 1.108
12 1.100 1.352 0.654 1.122 0.746 0.487 1.299 0.992
13 1.200 1.198 0.623 1.197 0.722 0.450 1.408 0.892
14 1.300 1.088 0.591 1.269 0.699 0.413 1.517 0.816
15 1.400 1.022 0.560 1.337 0.676 0.378 1.626 0.765
16 1.500 1.000 0.528 1.402 0.653 0.345 1.735 0.740
17 1.600 1.022 0.497 1.463 0.630 0.313 1.844 0.743
18 1.700 1.088 0.465 1.521 0.607 0.282 1.953 0.770
19 1.800 1.198 0.434 1.575 0.584 0.253 2.062 0.818
20 1.900 1.352 0.402 1.625 0.560 0.225 2.171 0.884
21 2.000 1.550 0.371 1.671 0.537 0.199 2.280 0.960
22 2.100 1.792 0.339 1.713 0.514 0.174 2.389 1.041
23 2.200 2.078 0.308 1.750 0.491 0.151 2.498 1.120
24 2.300 2.408 0.276 1.783 0.468 0.129 2.607 1.187
25 2.400 2.782 0.245 1.811 0.445 0.109 2.716 1.234
26 2.500 3.200 0.214 1.834 0.422 0.090 2.825 1.253
27 2.600 3.662 0.182 1.852 0.398 0.073 2.934 1.234
28 2.700 4.168 0.151 1.864 0.375 0.057 3.043 1.170
29 2.800 4,718 0.119 1.870 0.352 0.042 3.152 1.051
30 2.900 5.312 0.088 1.870 0.329 0.029 3.261 0.871
31 3.000 5.950 0.056 1.870 0.306 0.017 3.382 0.625
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Tabela 6.12 — Resultados expostos no capitulo 7 de Anderson (1995) para o instante O de simulagao

x A I V T

L A o fay Ty

0 5.950 1.000 0.100 1.000
0.1 5312 0.969 0.207 0.977
0.2 4718 0.937 0.311 0.954
0.3 4168 0.906 0.412 0.931
0.4 3.662 0.874 0.511 0.907
0.5 3.200 0.843 0.607 0.884
0.6 2.782 0.811 0.700 0.861
0.7 2.408 0.780 0.790 0.838
0.8 2.078 0.748 0.877 0.815
0.9 1.792 0.717 0.962 0.792
1.0 1.550 (L6835 1.043 0.760
1.1 1.352 0.654 1.122 0.745
1.2 1.198 0.622 1.197 0.722
1.3 1.088 0.591 1.268 0.699
1.4 1.022 (0. 560 1.337 0.676
1.5 1.000 0.528 1.402 0.653
1.6 1.022 (.497 1.463 0.630
1.7 1.088 0.465 1.521 (0.607
1.8 1.198 0.434 1.575 0.583
1.9 1.352 0.402 1.625 0.560
2.0 1.550 0.371 1.671 0.537
2.1 1.792 0.339 1.713 0.514
22 2.078 0.308 1.750 0.491
2.3 2408 0.276 1.783 0.468
24 2.782 0.245 1.811 0.445
2.5 3.200 0.214 1.834 0.422
2.6 3.662 0182 1.852 0.398
27 4.168 0.151 1.864 0.375
2.8 4718 0.119 1.870 0.352
2.9 5312 0.088 1.870 0.329
3.0 5.950 0.056 1.864 0.306
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Tabela 6.13 — Resultados obtidos pelo autor a partir da simulagédo do caso exposto no capitulo 7 de

Anderson (1995) para o 1° passo de simulacéo

I x/L AlA* p/po V/ag TITo p/po M Vazao
1 0 5.950 1.000 0.112 1.000 1.000 0.112 0.663
2 0.100 5.312 0.955 0.212 0.972 0.928 0.215 1.073
3 0.200 4.718 0.927 0.312 0.950 0.881 0.320 1.363
4 0.300 4.168 0.900 0.411 0.929 0.836 0.427 1.542
5 0.400 3.662 0.872 0.508 0.908 0.792 0.534 1.623
6 0.500 3.200 0.845 0.603 0.886 0.748 0.640 1.629
7 0.600 2.782 0.817 0.695 0.865 0.706 0.747 1.578
8 0.700 2.408 0.789 0.784 0.843 0.665 0.853 1.489
9 0.800 2.078 0.760 0.870 0.822 0.625 0.960 1.375
10 0.900 1.792 0.731 0.954 0.800 0.585 1.067 1.250
11 1.000 1.550 0.701 1.035 0.778 0.545 1.174 1.125
12 1.100 1.352 0.670 1.113 0.755 0.506 1.281 1.008
13 1.200 1.198 0.637 1.188 0.731 0.466 1.389 0.907
14 1.300 1.088 0.603 1.260 0.707 0.426 1.498 0.827
15 1.400 1.022 0.568 1.328 0.682 0.387 1.609 0.770
16 1.500 1.000 0.531 1.394 0.656 0.349 1.720 0.740
17 1.600 1.022 0.495 1.456 0.631 0.312 1.833 0.736
18 1.700 1.088 0.459 1.514 0.605 0.278 1.945 0.756
19 1.800 1.198 0.425 1.568 0.581 0.247 2.058 0.798
20 1.900 1.352 0.392 1.619 0.556 0.218 2.170 0.858
21 2.000 1.550 0.361 1.666 0.533 0.192 2.282 0.931
22 2.100 1.792 0.330 1.709 0.510 0.168 2.393 1.012
23 2.200 2.078 0.301 1.748 0.487 0.146 2.504 1.092
24 2.300 2.408 0.271 1.782 0.465 0.126 2.614 1.164
25 2.400 2.782 0.242 1.813 0.443 0.107 2.724 1.220
26 2.500 3.200 0.213 1.838 0.421 0.090 2.834 1.252
27 2.600 3.662 0.184 1.858 0.398 0.073 2.944 1.250
28 2.700 4.168 0.154 1.874 0.376 0.058 3.055 1.206
29 2.800 4,718 0.125 1.884 0.354 0.044 3.167 1.110
30 2.900 5.312 0.095 1.889 0.332 0.032 3.280 0.955
31 3.000 5.950 0.066 1.894 0.309 0.020 3.404 0